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How to Use this Book 

How to use these pages: 

• This book intended to complement the work you do with a teacher, not to replace the 
teacher. 

• Read the book along with your notes. 
• If you get stuck, ask your teacher for help. 
• The best way to succeed in Physics is to practise the questions. 

 

There are many other resources available to help you to progress: 

• Web-based resources, many of which are free. 
• Your friends on your course. 
• Your teacher. 
• Books in the library. 

 

This option, which used to be called Applied Physics, looks at how rotating objects 
behave under different conditions.  This is particularly important to those who are 
designing rotary machines.  You will see how the equations of rotary motion are very 
similar in form to the equations of linear motion. 

  

It also looks at the Laws of Thermodynamics and how these apply to heat engines.  These 
link to the behaviour of gases that you studied in Topic 13. 

  

This option will be of particular interest to students who want to study Engineering as a 
degree. 

  



  

3 
 

TOPIC 14C ENGINEERING PHYSICS 

Tutorial Title Page 
14C.01 Rotational Dynamics 4 
14C.02 Angular Momentum and Power 34 
14C.03 First Law of Thermodynamics 43 
14C.04 The P-V Diagram 57 
14C.05 Internal Combustion Engines 65 
14C.06 Second Law of Thermodynamics 84 
14C.07 Deriving the Moment of Inertia (Ext) 100 

 Answers 123 
 

  



  

4 
 

TOPIC 14C ENGINEERING PHYSICS 

Tutorial 14C.01 Rotational Dynamics 
AQA Syllabus 

Contents 
14C.011 Introduction 14C.012 Angular Velocity 

14C.013 Angular Displacement 14C.014 Angular Acceleration 

14C.015 Moment of Inertia 
(Extension for SQA Advanced 
Higher) 

14C.016 Kinetic Energy 

14C.017 Flywheels 14C.018 Equations of Rotational 
Motion 

14C.019 Torque and Angular 
Acceleration 

14C.0110 Using Calculus (SQA 
Advanced Higher and extension) 

 

14C.011 Introduction to Rotational Dynamics 

When we looked at objects moving in a circle in Topic 8, we only considered small objects 
moving around a central point.  The objects themselves were small compared to the 
radius of their orbit.  Examples included model aeroplanes tethered by a string, or planets 
moving around a star.  These objects were held to their paths by centripetal force and if 
that force were stopped, the objects would fly off tangentially in a straight line. 

  

These ideas don't work for rotating systems in which an object is spinning on its 
axis.  Examples of these include: 

• rotors of electric motors. 

• flywheels. 

 

You will come across quite a lot of odd looking symbols.  Don't worry; they are Greek 
letters which are used as Physics codes.  A lot of the equations are identical in concept 
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to the equations of linear motion (motion in a straight line) which you came across in 
Topic 5 (AS). 

  

Let's look at the odd symbols and what they mean: 

  

Symbol Pronounced Greek Letter Code for 

 Alpha a acceleration 

 Omega long o - ō as in 
"mōtion" 

angular 
velocity 

 Theta "th" as in 
"therapy" 

angle 

  

We will now have a look at some of the terms used in rotational dynamics: 

  

14C.012 Angular Velocity 

Angular velocity is an important quantity.  Suppose we had a record deck turntable 
turning at 33 rpm (revolutions per minute).  Clearly an object at the rim of the turntable 
moves with a higher linear speed that an object towards the centre.  However both move 
through the same angle every second.  We call this the angular velocity, which has the 

physics code .  We don't use degrees per second, but radians per second.  Go back to 
Further Mechanics Tutorial 1 if you are not sure what a radian is (1 rad » 57o).  Radians 
are dimensionless units, so are ignored in unit analysis.  Some purists say they should 
be left out altogether.  In these notes I will always include them. 

  

Every revolution, all parts of the object turn through  radians. 

  

A common way of expressing the rate of turning is revolutions per minute.  All the 
equations we will use need the rate of turning (angular velocity) to be in radians per 
second.  Therefore, be a good chap and convert the revolutions per minute to radians per 
second. 
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Angular velocity =  (rev min-1 ÷ 60 s min-1) .............. Equation 1 

  

 Note that rpm is better written min-1.  But you won't be penalised for writing 'rpm'. 

  

14C.013 Angular Displacement 

Angular displacement is simply the angle turned in any given direction.  It is given the 

code  and is measured in radians.   

𝜃 =  𝜔𝑡 .............. Equation 2 
(That was a short sub-section, wasn’t it?) 

  

14C.014 Angular Acceleration 

If the angular velocity is changing, it is of course accelerating.  So, we have a term angular 

acceleration, given the code .  It has the code , rather than a to distinguish it from 
linear acceleration. 

So, just like (linear) velocity = displacement ÷ time, we can write: 

angular velocity = angular displacement ÷ time 

  

................ Equation 3 

And just like acceleration (m s-2) = change in velocity (m s-1) ÷ time interval (s), we can 
write 

angular acceleration (rad s-2) = change in angular velocity (rad s-1) ÷ time interval (s) 

 

𝛼 =
∆𝜔

∆𝑡
 ................ Equation 4 
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All these quantities are vector quantities, but the directions are pretty 
easy, clockwise or anticlockwise.  No horrible sines or cosines.  So far pretty easy, 
what?  Now it gets a bit harder... 

 

Remember that there are  radians in 1 revolution. 
 
Always make sure that you calculator is set to radians, NOT degree 
when dealing with rotational quantities. 

  

 

 14C.015 Moment of Inertia 

You will know that any mass has a reluctance to move, which we call inertia.  In linear 
dynamics, we say that all objects are point masses.  We have an analogous situation in 
rotational dynamics which we call the moment of inertia. The moment of inertia is 
the measure of the opposition of a rotating body to angular acceleration.  It is given 
the physics code I and its units are kg m2.  

  

 
Figure 1 A spinning disc 

Suppose we have a disc radius r spinning with angular velocity  rad s-1.  We can think of 
it as made up of lots of little point masses.  We know that the linear speed of each point 

is v, where  
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v = r ............... Equation 5 

We also know that: 

............... Equation 6 

 Each little point mass m therefore has a kinetic energy: 

............... Equation 7 

The total kinetic energy can be found by adding up all the kinetic energies of the little 
point masses: 

  

.............. Equation 8 

We can rewrite this as: 

  

.............. Equation 9 

And we can rewrite this as: 

.............. Equation 10 

  

The term mr2 is the sum of all the terms mr2.  The symbol  is “Sigma”, a Greek capital 

letter ‘S’.  This term mr2 is described as the moment of inertia and is given the code I. 
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............ Equation 11 

  

Its units are kilogram metre squared (kg m2).   

For the kinetic energy: 

................ Equation 12 

  

  

In the exam you are NOT expected to then go on to integrate to derive for particular cases 
of moments of inertia.  The appropriate relationship will be given to you, or the moment 
of inertia will be given to you already worked out.  However, if you want to see this, click 
to go to Tutorial 14C.07.  It is only required for students studying for the Cambridge Pre-U 
syllabus.  The derivations are long and are not intuitive. 

  

For a circular disc of mass M and radius r: 

................. Equation 13 

For a solid cylinder, the relationship is as above.  

For a hollow cylinder open at both ends, the moment of inertia is: 

................. Equation 14 
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For a solid sphere, mass M and radius r the moment of inertia is: 

............... Equation 15 

  

For a thin spherical shell, mass m and radius r the moment of inertia is: 

................ Equation 16 

  

In the past papers I have not yet seen the first or third of these formulae, but I have seen 

a question that got you to use I = Mr2, ignoring the sigma bit.  Other times you have 

been asked to find I from either the torque or the kinetic energy. 

  

Extension (for SQA Advanced Higher Students only) 

For a rod of length l, and mass m, the moment of inertia can be worked out using the 
relationships below.  If you want to see the derivation, see Topic 15. 

 If the rod is spinning about its centre point like this (Figure 2): 

 
Figure 2 A rod spinning about its centre point 
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The relationship is: 

.................. Equation 17 

 If the rod is held at one end like this (Figure 3): 

 
Figure 3 Moment of inertia for a rod held at the end 

The relationship is: 

............... Equation 18 

The key thing to remember is that the moment of inertia is the rotational equivalent 
of mass. 

  

  

14C.016 Kinetic Energy 

The kinetic energy of a spinning object is given by: 

................. Equation 19 

[I - moment of inertia (kg m2);  - angular velocity (rad s-1)] 

  

Like kinetic energy in linear motion, rotational kinetic energy is a scalar, even though the 
angular velocity is a vector. 
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Question 14C.01.5 gets you to consider a problem using this relationship. 

To show you that Question 14C.01.5 is not a figment of the examiner's imagination, the 
picture below (Figure 4) shows how a flywheel battery works 

 
Figure 4 A flywheel battery (Image by Tosaka, Wikimedia Commons) 

(1) Case; (2) Flywheel; (3) Motor-generator; (4) Main bearing; (5) Transformer; (6) Vacuum 
pump; (7) Current in; (8) Current out. 

 

This idea is not new.  Third-rail electric locomotives had a motor-generator to help them 
trundle over gaps in the electric conductor rail. 

  

The total potential energy of a rotating system that is in linear motion is the sum of: 

• the translational kinetic energy. 

• the rotational kinetic energy. 

 

Total Ep = Rotational Ek + Translational Ek  

 

𝐸𝑝 =  
1

2
𝐼𝜔2 +

1

2
𝑚𝑣2 ................. Equation 20  
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Worked Example 
A solid ball has a mass of 1.50 kg and a diameter of 10.0 cm.  It is spinning at 2000 
revolutions per minute and is travelling horizontally at a linear speed of 20.0 m s-1. 
  
Calculate: 
(a) The moment of inertia. 
(b) The rotational kinetic energy. 
(c) The total potential energy. 
  
Answer 
Radius = 0.050 m.   Rate of rotation per second = 33.3 s-1.  
Angular velocity = 33.3 ×  = 209.4 rad s-1. 
  
(a)  Formula for the moment of inertia of a sphere: 

 
I = (2 × 1.50 kg × (0.050 m)2) ÷ 5 = 1.50 × 10-3 kg m2. 

  
(b)  Rotational kinetic energy: 

 
Ek = 1/2 × 1.50 × 10-3 kg m2 × (209.4 rad s-1)2 = 32.9 J 

  
(c)  Translational kinetic energy: 

 
Ek = 1/2 × 1.50 kg × (20.0 m s-1)2 = 300 J 

  
      Potential energy = translational kinetic energy + rotational kinetic energy 
  
                             

= 300 J + 32.9 J = 333 J (3 s.f) 
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14C.017 Flywheels 

Many machines have a flywheel which is a heavy lump of metal spinning on an axis. A 
single cylinder petrol engine needs a flywheel to keep it running smoothly.  If it didn't have 
one, it would stall on the compression stroke.  Four-cylinder car engines would still be 
jerky without a flywheel.  Twelve cylinder car engines have less need for a flywheel, but 
still have one because: 

• It is useful to put the toothed ring for the starter motor onto it. 

• It is a useful face for a clutch. 

 

What is the best design for a flywheel?  The obvious shape is a solid disk of steel.  The 
diagram shows a couple of cross-sections.  Both flywheels have the same mass and 
mean radius.  Both have a small flange of very small mass so that they can be bolted to 
the shaft. 

  

• A solid disk flywheel (Figure 5): 

 
Figure 5 A solid disc flywheel 

• A flywheel that has a thin plate in the middle and most of its mass as a ring around 
the outside (Figure 6): 

 
Figure 6 A ring flywheel 

     

The flywheel battery in 14C.01.5 would have a flywheel of the second design. 
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14C.018 Equations of Rotational Motion 

There are four of these, each of which has an equivalent of linear motion, and are used in 
exactly the same way.  The only difference is the code for some of the terms, and if you 
are at ease with angular velocity, angular displacement, and angular acceleration, you 
will have no difficulty at all with these.  If you have forgotten about the linear equations of 
motion, go back to Topic 5 and revise them. 

  

This table shows the terms and what they mean: 

  

Term What it means Units 
 Angular velocity at start rad s-1 

 Angular velocity at end rad s-1 

 Angular displacement rad 

 Angular acceleration rad s-2 

t time s 
  

(1) Used to link a second angular velocity to the first, acceleration and time. 

  

................ Equation 21 

It is used just like v = u + at 

  

(2)  Used to link the angular displacement to the angular velocity at the start, with the 
time, and the angular acceleration. 

............... Equation 22 

  

It is used just like s = ut + 1/2 at2. 
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(3) Used to link the angular velocity at end with the first angular velocity, the angular 
displacement and the acceleration. 

.............. Equation 23 

 It is used just like v2 = u2 + 2as. 

 

(4) This equation is used to link the angular displacement to the average of two angular 
velocities and the time interval: 

............Equation 24 

  

It is used just like s = (u + v)t/2 

   

  

14C.019 Torque and Angular Acceleration 

You will be familiar with F = ma.  Rotational motion has an identical relationship.  You 
will remember that a torque is a turning force (Figure 7).   

 
Figure 7 Torque, a turning force 
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The diagram shows a cord wrapped around a pulley (like the pull-cord used to start a lawn 

mower).  The pulling force F causes a torque  (tau, a Greek lower case letter 't', the 
physics code for torque) which can easily be worked out by: 

 = Fr............. Equation 25 

  

If we double the pull, we will double the torque which means that the angular 
acceleration will be doubled.  However, if we look at the mass, we find that it's not the 
only factor.  The shape of the pulley is important, so instead of mass, we use the moment 
of inertia. 

 So, if we apply a torque to a rotating body, it will undergo angular acceleration.  In other 
words, it will spin faster.  The angular acceleration due to a torque is given by: 

 = I ............. Equation 26 

  

[  - torque (N m); I - moment of inertia (kg m2);  - angular acceleration (rad s-2)] 

  

 Let's sum up by comparing linear motion with rotational motion: 

  

Linear Motion Rotational Motion 

Quantity Code Unit Quantity Code Unit 

Displacement s m Angular 
displacement 

 rad 

Velocity v m s-1 Angular 
velocity 

 rad s-1 

Acceleration a m s-2 Angular 
Acceleration 

 rad s-2 

Mass m kg Moment of 
Inertia 

I kg m2 

Force F N Torque  N m 
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We will compare equations: 

  

Linear Motion Rotational Motion 

 

 

 

α =
∆ω

∆t
 . 

F = ma  = I 

v = u + at 
 

 

 

 

 

 

 

  

You select for the equation of rotational motion in exactly the same way as you would for 
an equation for linear motion.  Suppose you had a problem where you had time, the 
angular velocity at the start and end, and you were asked to find the angular acceleration.  
You would choose (and rearrange): 
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14C.0110 Using Calculus in Rotational Dynamics (SQA AH and Extension) 

This subsection is for students of the SQA Advanced Higher syllabus only.  For students 
of other A-level syllabi, you are NOT expected to know this.  However, you may want to 
study this as an extension.  These notes may be helpful if you are intending to study 
Engineering as a university level course.  Do not bring it up in the exam, in case you get it 
wrong.  You have been warned! 

 

In linear dynamics (Topic 8) we saw how we can use calculus to establish relationships 
between quantities like acceleration, velocity, and displacement.  We can do the same in 
rotational dynamics.   We do not get sudden transitions from angular acceleration to 
constant angular velocity, with sudden graphical inflections.  At university level, 
a calculus treatment is preferred.  Calculus is a mathematical technique that allows us 
to work out the gradient of a graph or the area under the graph, if we know the relationship 
between two quantities.  

  

In rotational dynamics you will see the following: 

  

1. Angular velocity, , is the rate of change of angular displacement .  In calculus 
notation, this is written as: 

.............. Equation 27 

  

2. Angular acceleration, , is the rate of change of angular velocity, .  In calculus 
notation, this is written as: 

.................. Equation 28 

  

So, what is the difference?  If we are talking about a constant rate of change, there is no 
difference.  However, if the rate of change is variable, the calculus notation is used for 
an instantaneous change.  This is summed up in the graph in Figure 8. 
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Figure 8 Showing the difference between constant change and instantaneous change 

In this graph we see a very irregular increase in the angular velocity of an object.  We can 
look at the rate of change in velocity at a particular instant, or we look at the overall 
change in velocity over a longer period.  The instantaneous change in the angular velocity 

is represented by the term d, while the overall change is represented by .  

  

We could, of course, take a tangent from the graph at the particular instant and measure 
the gradient of the tangent.  However, it is likely that there will be uncertainty.  With 
differentiation, there is no uncertainty. 

  

Acceleration is related to displacement using: 

................ Equation 29 

This is a second derivative, which means a derivative of a derivative. 

  

In summary: 

............... Equation 30 
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Using Differentiation 

Differentiation is about finding the gradient of the graph.  As we have seen above: 

• Velocity is the gradient of the displacement time graph. 

• Acceleration is the gradient of the velocity time graph 

  

Maths Note 

There are two things that we can do with Calculus: 

1. We can differentiate, which means that we find the gradient of the graph of a 
known relationship. 

2. We can integrate, which means that we find the area under the graph of a 
known relationship. 

  

We do these mathematically without having to draw the graph. 

  

This is NOT a comprehensive treatment of calculus, but I hope it will help you 
how to use it in kinematics calculations 

  

Differentiation 

Differentiation is about determining the gradient of a graph. 

  

There are a number of rules of differentiation.  We will use only two here.  

• Added constants differentiate to 0. 

• Powers differentiate according to this formula: 

 
• Multiplied constants are multiplied with the result of the formula that has 

been differentiated.  Suppose the constant is b: 
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Let us suppose we have a straight line graph that follows the general 
relationship: 

y = mx + c 
 

If we want to differentiate this, we get: 

 
Therefore: 

 

This tells us that the gradient is m. 

  

We can use calculus to work out the velocity at a particular instant.  Here is a graph 
showing the displacement of an object subject to constant acceleration.  This graph has 
been drawn using the equation: 

................. Equation 31 

The value of the angular acceleration is 4.0 rad s-2 (Figure 9). 
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Figure 9 Graph of angular displacement against time 

We could, of course, work the gradient of the tangent to give us the velocity at exactly 6.0 
s, but there will be uncertainty.  Instead, let's use calculus: 

  

................. Equation 32 

Therefore, we can substitute: 

 = 4.0 rad s-2 × 6.0 s = 24 rad s-1 

  

This is a lot easier that drawing a tangent, then measuring the rise and the run. 

  

  

  



  

24 
 

TOPIC 14C ENGINEERING PHYSICS 

We can differentiate the equation: 

................. Equation 33 

As below: 

..............Equation 34 

To give us: 

................ Equation 35 

  

Using Integration 

Integration is about finding the area under the graph.  In Topic 8 we have seen how the 
kinematics equations have been worked out using the area under the velocity time 
graph.  The same applies to rotational dynamics.  For some questions we have simply 
counted the squares under the graph.  The counting of squares is both tedious and prone 
to uncertainty. In simple graphical treatments, acceleration is counted as constant.    In 
reality it is not. Therefore, a mathematical approach is more satisfactory, as it can be 
quicker and is less prone to uncertainty.  

  

Consider a rotor of an electric car motor accelerating at a rate of  rad s-2 over a period 

of t s.  This is a real world situation, and the acceleration is not constant, but reduces 
because of the increase in friction from the road and the air resistance.  See Figure 10. 
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Figure 10 Graph of angular velocity against time 

Suppose we want to find the angular displacement  between the points A and B.  We 
know that angle turned is the area under the graph.  We could use the equation: 

  

................ Equation 36 

  

The equation works out the area under the orange line in the graph.  The answer it would 
give would be too low. 

  

Alternatively, we could break the area into three little strips as shown in the graph.  So, we 
could work out the area of each little strip and add them together: 

  

............... Equation 37 
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This will give us a better answer, but it will only be an approximation.  We could make the 
strips narrower, using a shorter time interval (Figure 11).  

  

 
Figure 11 Refining the finding of area under the graph 

Therefore, the answer gets closer to the real answer, but it is still an 
approximation.  However, if we make the time interval infinitesimally small, we end up 
with the true answer.  This we do by the process of integration.  Instead of writing the 
width of each strip a Dt, we write dt.  Integration adds up all the little strips to give us the 
true answer. 
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Maths Note 

Integration 

Integration is the reverse process of differentiation.  The idea is shown in the picture 
below: 

 
  

The 2x term is the function.  The function to be integrated is sometimes called 
the integrand.  Therefore, we write this in calculus form as: 

  

 
  

The dx term shows that the little strips go along the x-axis.  The integration symbol is 
a fancy capital letter 'S', which means "summed together".  So, we now write: 

 
  



  

28 
 

TOPIC 14C ENGINEERING PHYSICS 

The C term is a constant.  When we differentiated, the constant that was added to 
the function had a differentiated value of 0.  Now we are applying the process in 
reverse, we need to have a definite value for the constant. 

  

Here are some rules for integration: 

• A constant is added to the integrated function.  In some cases, this might be 
zero.  In other cases, it has a definite value. 

• Constants that multiply a function are multiplied with the result of the 
integrated function.  Suppose we have a constant, b: 

 

• The power rule is shown below.  It does not work with x-1. 

 
  

• The integral of x-1 is shown below: 

 
  

Often you will need to integrate between two points.  You may see an equation like 
this: 

 
  

This means you have to work out the value of the integral at p and the value of the 
integral at q and then subtract one from the other.  This is shown in the picture 
below.  The constant, C = 0 for the sake of this argument. 
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Consider an object moving with a constant angular acceleration,  rad s-2 from an initial 

angular velocity at t = 0,  rad s-1, to a final angular velocity, 2 rad s-1 at time t.  This is 
shown on the graph below (Figure 12): 

 
Figure 12 Graph of constant change in angular velocity against time 

We know that this graph shows the equation: 

.................... Equation 38 
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We also know that the area under the graph is the displacement.  So, we can integrate, 
since we know that: 

................ Equation 39 

So, we can write: 

........Equation 40 

Therefore: 

.............Equation 41 

So, let's use that result: 

Worked Example 

An object has an initial angular velocity of 6.5 rad s-1.  At time t = 0 it accelerates at a 
rate of change of angular velocity of 2.85 rad s-1.  What is the angle turned between time 
t = 3.6 s and time t = 8.5 s? 

Answer 

We can write this in calculus notation: 

 
Therefore: 

 

 
  

  



  

31 
 

TOPIC 14C ENGINEERING PHYSICS 

Questions 

Tutorial 14C.01 

14C.01.1 

What is the angular velocity of a hi-fi record deck playing at 33 rpm? 

 

14C.01.2 

What do you think the units are for angular acceleration?  

 

14C.01.3 

It takes a motor 5 seconds to accelerate from rest to 3000 rpm.  What is its angular 
acceleration? 

 

14C.01.4 

A circular disc and a solid sphere each has a mass of 2.5 kg and a radius of 0.2 m.  What 
is the moment of inertia for each one? 

 

14C.01.5 

A flywheel battery can be used in place of lead-acid batteries to provide a short-term 
electrical power supply when mains power fails. Energy is stored as rotational kinetic 
energy in a rapidly spinning rotor, which is driven up to speed by a mains-powered motor. 
To recover the energy, the motor is operated in reverse as a generator driven by the 
spinning rotor. 

  

The rotor of a flywheel battery is a thin-walled circular cylinder of mass 160 kg and mean 
radius 0.34 m.  It can be rotated at a maximum safe angular speed of 44 000 rev min-1. 

 Calculate: 

(a)  

the moment of inertia of the rotor about its own axis, 

(b) 

the rotational kinetic energy stored in the rotating rotor when it spins at 44 000 rev min-1. 

(AQA past question) 
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14C.01.6 

By considering the amount of kinetic energy each one can store, which one is the better 
design?  State what assumptions you make. 

 

14C.01.7 

A car wheel is being tested for balance.  It is spinning at 750 rpm and the machine then 
accelerates it to 1500 rpm over a period of 3 s.  

What is the angular acceleration? 

 

14C.01.8 

Use your result from Question 14C.01.7 to work out the angular displacement through 
which the wheel turns as it accelerates from 750 rpm to 1500 rpm.  

 

14C.01.9 

In an experiment to test a "crash-proof" fuel, an aeroplane was deliberately crash-landed 
onto spikes which were designed to slice the fuel tanks open.  The test was a failure 
because the fuel burst into flames.  The reason for this was because one of the engines 
was stopped by a spike.  The turbine was running at 30 000 rpm and was stopped within 
1/3 revolution.  The kinetic energy of the engine was dissipated as intense heat which 
acted as an ignition source for the fuel. 

  

What was the angular deceleration suffered by that engine? 

 

14C.01.10 

A car wheel is being tested for balance.  It is spinning at 750 rpm and the machine then 
accelerates it to 1500 rpm over a period of 3 s.  Use the equation: 

 

to work out the angular displacement. How does your answer compare to the answer 
you worked out in Question 14C.01.8? 
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14C.01.11 

The wheel of a large dumper truck has a moment of inertia of 10 000 kg m2 and is being 
tested by being rotated at 60 rpm.  It is brought to rest in a time of 40 s. 

(a) What is the initial angular velocity in rad s-1? 

(b) What is the angular acceleration? 

(c) What is the angular displacement in the first 20 s? 

(d) What is the applied torque? 
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Tutorial 14C.02 Angular Momentum and Power 
AQA Syllabus 

Contents 
14C.021 Angular Momentum 14C.022 Angular Impulse 

14C.023 Work and Power in Rotating Objects 

 

 

14C.021 Angular Momentum 

In Topic 5 we met linear momentum as the product of mass and velocity, the simple 

equation being p = mv.  Any object moving in a straight line has a momentum, so it is 
very reasonable that any spinning object has angular momentum in its spin.  As we saw 
in 14C.01, we found that the quantity in rotational dynamics that was equivalent 
to mass was the moment of inertia.  So, we can write an expression that tell us about 
angular momentum: 

  

Angular momentum = moment of inertia × angular velocity 

In code: 

L = I ............... Equation 42 

  

[L - angular momentum (kg m2 s-1); I - moment of inertia (kg m2);  - angular velocity (rad 
s-1)] 

   

Cricketers add spin to the ball when they bowl by giving the ball a quick flick just as the 
ball leaves their hand.  The idea is to make it change the direction of flight as it bounces.  (I 
was hopeless at cricket and never got the knack...  For this and many other reasons I 
developed a heart-felt loathing for cricket, which I have to this day.) 

  

Like momentum in a straight line, angular momentum is conserved, which means that 
momentum before = momentum after, provided that there has been no angular 
impulse.  You can try this for yourself on a swivel chair.  Spin yourself around.  Put your 
legs out and you will find yourself spinning more slowly.  Then tuck your legs in, and you 
will spin faster.  You are changing the moment of inertia.  If the moment of inertia 
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increases, the angular velocity must go down to keep the angular momentum the 
same. 

  

High divers and ice skaters use the ideas of angular momentum as part of their acts, 
although not that many know about the physics. 

  

  

Worked Example 
A ballet dancer spins about her vertical axis at 1 revolution per second with her arms 
outstretched.  With her arms folded, her moment of inertia decreases to 40 % of what 
it was.  What is her new rate of turning? 
  
Answer 
Let her original moment of inertia be I, so her new moment of inertia = 0.4 I 
Angular momentum is conserved. 
 

I ×1 s-1 = L = 0.4 I × 
 = 1 ÷ 0.4 = 2.5 revolutions per second. 

 
Note that the turning rate has been kept at revolutions per second.  This is alright, but 
you must be consistent.  (Strictly speaking, the answer = 5  rad s-1 = 15.7 rad s-1.) 
  

  

  

14C.022 Angular Impulse 

In Mechanics we saw that impulse was change in momentum.  We could rewrite 
Newton II as: 

............... Equation 43 

Therefore, impulse is given by rearranging Equation 43:  

p = Ft ................. Equation 44 
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We can do exactly the same with angular momentum.  We call the change in angular 
momentum the angular impulse.  Instead of Force, we have torque.  Therefore: 

  

Angular impulse (kg m2 rad s-1) = torque applied (N m) × the time interval (s) 

  

In physics code we write it as: 

  

..............Equation 45 

[L = angular impulse (kg m2 rad s-1);  = torque (N m); t = time interval (s)] 

 

A small torque applied for a long time interval will have the same effect as a large torque 
applied for a short time interval. 

  

Here is a rotating sign that rotates in windy conditions.  You often see them outside 
garages (Figure 13). 

  

 
Figure 13 A rotating sign 
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 14C.023 Work and Power in Rotating Objects 

In linear motion we have seen that work done can be related by the simple equation: 

Work done (J) = Force (N) × distance moved in the direction of a force (m) 

  

W = Fs .............. Equation 46 

 We can use the same idea to work out the work done in a rotating system: 

Work done (J) = torque (N m) × angle rotated (rad) 

  

W =  ................ Equation 47 

 

 In linear motion we also found a useful relationship linking force and power: 

  

Power (W) = force (N) × speed (m s-1). 

  

We can derive a similar expression for rotational motion: 

• Work done = energy used. 

• Power = energy used ÷ time interval  

• Power = (torque x angle rotated) ÷ time interval 

  

................... Equation 48 

But: 

................. Equation 49 
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So, it does not take a genius to see: 

Power (W) = torque (N m) × angular velocity (rad s-1) 

  

P =   Equation 50 

   

All rotating machines have a certain amount of friction.  We treat friction as an opposing 
rotational couple which provides a torque in the opposite direction.  We use the equation: 

 = I ................ Equation 51 

 

to work out the rate of change of angular velocity. 

  

Worked Example 
A roller is running freely on its bearings and is turning at a constant angular velocity of 
8.5 rad s-1.  The moment of inertia of the roller is 2.5 kg m2.  If the frictional couple is 
0.67 N m, 
(a) what is the angular acceleration?  
(b) How many revolutions does the roller need to come to rest? 
  
Answer 
(a) Use the relationship 

 = I 
  
The frictional couple should be negative, as it is opposing the turning. 
  

-0.67 N m = 2.5 kg m2  
  

 = -0.268 rad s-2 (minus because the roller is slowing down) 
  
  
(b) To work out the angle covered, we use: 
 


 = 

 +  

0 = 8.5 rad s-1 + 2 × -0.268 rad s-2 ×  
 = 15.9 rad 

 
No of revolutions = 15.9 rad ÷ 2 rad = 2.5 revolutions 
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Questions 

Tutorial 14C.02 

14C.02.1 

Why are the units for L kg m2 s-1?  

 

14C.02.2 

A disc of moment of inertia 10 kg m2 rotates at an angular velocity of 20 rad s-1.  What is 
its angular momentum? 

 

14C.02.3 

A potter in an African village makes large clay pots on a stone wheel. The wheel rotates 
freely on a central bearing and is driven by the potter, who applies a tangential force 
repeatedly to its rim using his foot until the wheel reaches its normal working angular 
speed. He then stops driving and throws a lump of clay onto the centre of the wheel. 

  

The normal working angular speed of the wheel is 5.0 rad s-1. The moments of inertia of 
the wheel and the clay about the axis of rotation are 1.6 kg m2 and 0.25 kg m2, 
respectively. When the clay is added, the angular speed of the wheel changes suddenly. 
The net angular impulse is zero. Calculate the angular speed of the wheel immediately 
after the clay has been added. 

(AQA past question) 
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14C.02.4 

Consider this rotating sign. 

 

On a still day, a gust of wind from a passing vehicle imparts an angular impulse of 1.2 kg 
m2 rad s-1 to the sign, which accelerates from rest during a time of 2.8 s. The moment of 
inertia of the sign about its axis of rotation is 4.8 × 10-2 kg m2. 

  

Assuming that the frictional couple acting on the sign is negligible, calculate: 

(a) the angular momentum acquired by the sign as a result of the angular impulse, 
showing your reasoning clearly, 

(b) the angular speed of the sign immediately after the impulse has been imparted.  

(c) What was the torque that acted on the sign? 

(AQA Past Question) 

 

14C.02.5 

A torque of 135 N m is required to turn a nut through half a turn.  What is the work done 
by the mechanic? 

 

14C.02.6 

A motor gives out a torque of 150 Nm at a speed of 3000 rpm.  What is its power? 
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14C.02.7 

The diagram shows a human centrifuge used in pilot training to simulate the large "g" 
forces experienced by pilots during aerial manoeuvres. The trainee sits in the capsule at 
the end of the rotating centrifuge arm, which is driven by an electric motor. 

  

 

  

When working at maximum power, the motor is capable of increasing the angular speed 
of the arm from its minimum working speed of 1.6 rad s-1 to its maximum speed of 7.4 
rad s-1 in 4.4 s. 

  

The net power needed to achieve this acceleration is 150kW. 

  

(a) Assuming that this power remains constant during the acceleration, calculate the 
energy supplied to the centrifuge by the motor. 

  

(b) Hence estimate the moment of inertia of the rotating system.  

(AQA past question) 
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14C.02.8 

A rotating flower bed forms a novelty feature in the annual display of a horticultural 
society. The circular platform supporting the plants floats in a water tank and is caused 
to rotate by means of four water jets directed at the rim of the platform. 

 

  

Each of the four jets exerts a tangential force of 0.60 N on the platform at a distance of 
1.8 m from the axis of the rotation. The platform rotates at a steady angular speed, 
making one complete revolution in 110 s. 

(a) Calculate: 

(i) the total torque exerted on the platform by the four jets, 

(ii) the power dissipated by the frictional couple acting on the rotating platform, showing 
your reasoning. 

  

(b) When the water jets are switched off, all the kinetic energy of the loaded platform is 
dissipated as heat by the frictional couple and the platform comes to rest from its 
normal steady speed in 12 s. 

(i) The kinetic energy of the loaded platform when rotating at its normal steady speed is 
1.5 J. 

Show that this value is consistent with your answer to part (a) (ii). 

(ii) Calculate the moment of inertia of the loaded platform. 

  

(AQA Past Question) 
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Tutorial 14C.03 First Law of Thermodynamics 
AQA Syllabus 

Contents 
14C.031 First Law of 
Thermodynamics 

14C.032 Isothermal Changes 

14C.033 Adiabatic Changes 14C.034 Isovolumetric Processes 

14C.035 Isobaric Processes 

 

Before you tackle this tutorial, you might wish to look at Topic 13. 

  

14C.031 The First Law of Thermodynamics 

Thermodynamics is the study of heat flows and how they can be put to 
work.  Engines work by converting heat energy into movement energy, which can then do 
useful jobs of work for us.  We need to look at a couple of key words.  A system is the 
object of interest whose behaviour we are monitoring in relation to its surroundings.  A 
flask containing gas is a system; the water bath in which the flask is placed is its 
surroundings.  The diagram below helps to show the idea (Figure 14): 

  

 
Figure 14 A thermodynamic system 

The Laws of Thermodynamics were the results of work by nineteenth century 
physicists.  Ironically the Second Law came before the First Law.  Then a more 
fundamental law, the Zeroth Law was worked out. 
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In words the First Law of Thermodynamics is: 

  

The change in internal energy of a system is equal to the sum of energy entering the 
system through heating and energy entering the system through work done on it. 

   

We can write the first law in code: 

  

..............Equation 52 

 [Q = heat entering the system; U = increase in internal energy; W - work done by 
the system] 

  

The diagram here (Figure 15) explains the idea: 

 
Figure 15 Explaining Figure 15 

  

Worked Example 
A lump of lead of mass 0.50 kg is dropped from a height of 20 m onto a hard 
surface.  It does not bounce but remains at rest. 
What are Q, W, and U? 
  
Answer 
 

Q = 0 J as zero heat is supplied to the system 
U = mgh = 0.5 kg × 9.81 m s-2 × 20 m = 98 J 

W = - 98 J as work is done on the system rather than by the system. 
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 If we compress a gas in a bicycle pump, we find it gets hot.  Then we let the pump cool 
down, without releasing any gas. 

  

Consider a cylinder of area A.  A fluid is admitted at a constant pressure, p.  It makes the 

piston move a distance, s (Figure 16). 

  

 
Figure 16 Work being done on a piston in a cylinder 

We know that: 

• Pressure (N m-2) = force (N) ÷ area (m2) 

p = F/A ................ Equation 53 

• Work done (J) = force (N) × distance moved (m) 

W = Fs ................. Equation 54 

Therefore: 

• Force (N) = pressure (N m-2) × area (m2) 

F = pA ................. Equation 55 

  



  

46 
 

TOPIC 14C ENGINEERING PHYSICS 

• Work done (J) = pressure (N m-2) × area (m2) × distance moved (m) 

W = pAs ................ Equation 56 

• Area (m2) × distance moved (m) = change in volume (m3) 

V = As ................. Equation 57 

So, we can write: 

  

Work done (J) = pressure (N m-2) × change in volume (m3) 

  

In code: 

W = pV................... Equation 58 

  

This can be shown in a graph (Figure 17): 

 
Figure 17 Change in volume at a constant pressure 

The work done is the area under the graph.  
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 14C.032 Isothermal Changes 

In Topic 13 we saw that the behaviour of ideal gases is governed by the equation: 

  

pV = nRT ................Equation 59 

  

If we keep the temperature the same, we can say that pV = constant, which you may 
remember as Boyle's Law.  Keeping the temperature the same is called 
an isothermal compression or expansion.  We can sketch a graph (Figure 18): 

  

 
Figure 18 Isothermal compression or expansion 

Each of the lines is called an isothermal, because the temperature is kept the same.  We 
can make the compression and expansion of gases very nearly isothermal by pressing 
down on a bicycle pump very slowly, so that any heat generated can flow out very 
slowly.  Similarly, we can allow the gas to expand very slowly so that the heat flow in in 
very slow. 
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For all isothermal processes: 

• pV = constant and p1V1 = p2V2. 

• U = 0 because the internal energy is dependent on temperature, which does not 
change. 

• Q = W.  If the gas expands to do work W, and amount of heat Q must be 
supplied 

  

The process is a reversible isothermal change if the piston of the pump is allowed to 
expand after compression and follows exactly the same line on the graph that it did when 
being compressed and ends up in exactly the same place as when it started.  

  

  

14C.033 Adiabatic Changes 

A change where there is no heat flow in or out of a system is called adiabatic.   

  

Q = 0, therefore W = U 

  

If you push the plunger of a bicycle pump in very rapidly and block off the end, you get an 
adiabatic process where the temperature rise of the gas is entirely due to the work done 
in compressing the gas.  If a gas is allowed to expand without any heat energy being put 
in, the process is still adiabatic.  The expansion occurs at the expense of the internal 
energy.  The gas cools down.   

  

 
Figure 19 A trolley powered by a small carbon dioxide capsule 
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 An example of this is a little rocket that can be made with a very small cylinder of 
carbon dioxide at high pressure (Figure 19).  This is shown in the diagram above.  The 
heat flow through the side is negligible compared with the energy loss that causes the 
drop in temperature as a result of the expansion of the gas.  The cylinder gets so cold 
that frost forms on the outside, even though the room is warm. 

  

We can use the gas laws to work out the temperature loss.  A useful equation is: 

  

..................... Equation 60 

  

  

Worked Example 
A small rocket powered trolley uses a CO2 cartridge which contains 0.1 mol 
CO2 gas.  The volume of the cylinder is 15 × 10-6 m3. The temperature of the 
compressed gas is 300 K.  The gas is compressed to a pressure of 2.2 × 107 Pa.  What 
is the temperature of the uncompressed gas assuming that 1 mol of gas occupies 24 
× 10-3 m3 at 1.01 × 105 Pa?  (R = 8.3 J k-1 mol-1) 
  
0.1 mole occupies 2.4 × 10-3 m3 
  
The equation to use is  

 
  

(2.2 × 107 Pa × 15 × 10-6 m-3) ÷ 300 K = (1.01 × 105 Pa × 2.4 × 10-3 m3) ÷ T2 
 

T2 = (300 K × 1.01 × 105 Pa × 2.4 × 10-3 m3) ÷ (2.2 × 107 Pa × 15 × 10-6 m3)  

= 220 K (-53 oC) 
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Temperatures are sometimes given in Celsius.  They must be 
converted to Kelvin. Watch out for this bear trap. 

  

We can look at the behaviour of a gas being compressed adiabatically.  Remember no 
heat is allowed to enter or leave the system.  Look at the light green line (Figure 20): 

  

 
Figure 20 Adiabatic compression 

The adiabatic line is steeper than the isothermal lines: 

• At high pressure low volume, the adiabatic is at the value that you would expect for an 
isothermal at a high temperature; it has got hot. 

• At low pressure, high volume the adiabatic line cuts the isothermal at a low 
temperature; the gas has become cool. 

• The green line shows that as the volume decreases, the pressure rises, and vice versa. 
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• The equation for the adiabatic line is: 

................ Equation 61 

[k - constant;  - ratio Cp/Cv] 

  

• Cv is the energy needed to give unit temperature rise in 1 mole of gas where the 
volume is kept constant. 

• Cp is the energy needed to give unit temperature rise in 1 mole of gas where the 
pressure is kept constant. 

• For a monatomic gas,  = 1.67. 

• For a diatomic gas,  = 1.40. 

• For a polyatomic gas  = 1.33. 

• A more useful version of the equation is: 

............... Equation 62 

• Since Q = 0, W = -U 
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14C.034 Isovolumetric Processes 

Isovolumetric processes occur at constant volume.  We can show this on a graph that 
displays the isothermals as we have above (Figure 21). 

  

 
Figure 21PV graph of isovolumetric processes 

• The process occurs at constant volume.  The green line is vertical, showing that there 
is no change in volume. 

• The pressure and temperature at constant volume is shown in Equation 63. 

p1/T1 = p2/T2 ................ Equation 63 

• Since there is no change in volume, no work is done, so all heat entering the gas 
becomes internal energy. 

• In other words, the green line shows the pressure increasing as energy is supplied. 

• The end result of this is that the pressure goes up. 
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14C.035 Isobaric Processes 

These happen at a constant pressure.  The graph shows the idea (Figure 22): 

  

 
Figure 22 PV graph of isobaric change 

• The process occurs at constant pressure.  This is shown by the green horizontal 
line.  The pressure stays the same. 

• The equation is: 

V1/T1 = V2/T2 ................ Equation 64 

• Some of the heat is used to increase the internal energy, the rest to do work. 
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Questions 

Tutorial 14C.03 

14C.03.1 

What is internal energy? 

 

14C.03.2 

Some air in a bicycle pump is compressed so that its volume decreases and its internal 
energy increases.  If 25 J of work are done by the person compressing the air, and if 20 J 
of thermal energy leave the gas through the walls of the pump, what is the increase in 
the internal energy of the air? 

 

14C.03.3 

What happens if we release the pump in Question 14C.03.2?  

 

14C.03.4 

A cylinder has an area of 0.125 m2.  Steam is admitted at a pressure of 1.5 x 106 Pa.  The 
piston moves a distance of 0.20 m.  What work is done? 

 

14C.03.5 

Why can we assume that the behaviour of the gas is almost adiabatic?  
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14C.03.6 

The diagram below shows a pump used to inflate a rubber dinghy. When the piston is 
pushed down, the pressure of air in the cylinder increases until it reaches the pressure 
of the air in the dinghy.  At this pressure the valve opens and air flows at almost constant 
pressure into the dinghy. 

  

 

  

(a)  

The pump is operated quickly so the compression of the air in the cylinder before the 
valve opens can be considered adiabatic. At the start of a pump stroke, the pump 
cylinder contains 4.25 × 10-4 m3 of air at a pressure of 1.01 × 105 Pa and a temperature of 
23 °C. The pressure of air in the dinghy is 1.70 × 105 Pa.  Show that, when the valve is 
about to open, the volume of air in the pump is about 2.9 × 10-4 m3. 

  

 for air = 1.40 

  

(b)  

Calculate the temperature of the air in the pump when the valve is about to open. 

  

AQA Past Question 
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14C.03.7 

The diagram shows a sample of gas enclosed in a cylinder by a frictionless piston of 
area 150 cm2.  

  

 

  

When 300 J of energy is supplied to the gas, it expands and does work against a 
constant pressure of 1.0 x 105 Pa and pushes the piston 16 cm along the 
cylinder.  Calculate: 

(a) the work done by the gas 

(b) the increase in internal energy of the gas. 

(AQA Past Question) 
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Tutorial 14C.04 The P-V Diagram 
AQA Syllabus 

Contents 
14C.041 P-V Diagrams 14C.042 The Stirling Engine  

14C.043 Practical Efficiency 

  

14 C.041 P-V Diagrams 

In Tutorial 14C.03, we look at the graphs of pressure against volume (PV graphs) for 
individual events.  We are now going to take these a step further. 

When a gas undergoes changes that will eventually return to its original state, it will go 
through a cycle of processes. The diagram (Figure 23) below shows an ideal gas 
undergoing some processes. 

  

 
Figure 23 PV diagram for an ideal gas 
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The gas undergoes: 

• Isovolumetric changes between a and b, and c and d.  You may see this written 
as isochoric changes in some books. 

• Isobaric changes between b and c, and d and a. 

  

Let's analyse the changes and see what work gets done 

• From a to b, there is no work done as it is an isovolumetric change. 

• From b to c work is done by the gas as it expands.  Work done is the area of the 

rectangle bcef = p2(V2 - V1) 

• From c to d there is no work done as the change is isovolumetric. 

• From d to a work is done on the gas as it is compressed.  Work done is the area of 

the rectangle adef = p1(V2 - V1) 

• The overall work done is the difference between the two areas, i.e. the area of the 
rectangle abcd. 

   

The cycle diagrams are sometimes called indicator diagrams and are widely used by 
engineers looking at the work that can be got from an engine.  The diagram (Figure 23) 
above is for an ideal gas, but there is a machine called a Stirling Engine that gives an 
indicator diagram that is very similar.  Here is a picture (Figure 24) of the Stirling Engine 
which was invented in 1816. 

  

 
Figure 24 A Stirling engine 
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14C.042 The Stirling Engine 

  

 
Figure 25 PV diagram for a Stirling engine 

At point A air is in the cylinder at a pressure of 1.0 x 105 Pa and a temperature of 300 K.  We 
always use absolute temperatures.  We need to work out how many moles of gas there 
are in the cylinder. 

  

Worked example 
Use the gas equation to find out how many moles there are in the cylinder at point A 
(Figure 25). 
  
Answer 

pV = nRT 
  

n = pV/RT = (1.0 × 105 Pa × 0.0005 m3) ÷ (8.3 J mol -1 K-1 × 300 K) 
  

n = 0.0201 mol 
  

  

  

  



  

60 
 

TOPIC 14C ENGINEERING PHYSICS 

We can do an energy audit on the cycle.  You are NOT expected to know about the molar 
heat capacity of a gas at constant volume, or the molar heat capacity of a gas at constant 
pressure.  The table shows work done at various points about the cycle. 

  

Point Heat supplied 
to gas /J 

Work done on 
Gas /J 

Increase in 
Internal energy /J 

A 125 0 125 

B 700 -200 500 

C -375 0 -375 

D -350 +100 -250 
  

We can describe what is happening: 

• A to B 125 J is supplied to the gas raising its temperature at constant volume. 

• B to C 700 J of heat is supplied, while the gas does 200 J of work on the surroundings. 

• C to D 375 J is extracted from the gas to cool it at constant volume. 

• D to A to return the gas to its starting point 100 J of work has to be done on the gas and 
250 J are extracted from it so that the volume falls at constant pressure. 

If we look at the indicator diagram, we can find the work done by the engine.  It is the area 
of the pink rectangle. 

  

Overall, 825 J are supplied as heat, while 725 J are extracted as heat, and lost to heat the 
surroundings.  Of the work done, only 100 J is useful work done. 

  

Therefore, we can write down the thermal efficiency: 

  

Thermal efficiency = net work output ÷ heat input 

  

Often, we multiply the resulting fraction by 100 to give a percentage.  It is impossible to 
get anything more than 100 % efficiency, as that means that we would be creating energy.  

  

And we can't, so there! 

  

  



  

61 
 

TOPIC 14C ENGINEERING PHYSICS 

14C.043 Practical Efficiency 

The thermal efficiency is not the actual efficiency of the engine.  There will be frictional 
losses within the engine itself, reducing further the output available.  The engineer can 
design the engine to be as efficient as possible: 

• by considering the theory of how the gases behave as they expand and contract. 

• by designing the engine so that friction is low, valves are gas tight, and that parts of 
the engine are manufactured with high precision. (Sloppy tolerances give rise to 
"slogger", which thwarts many attempts to increase efficiency.) 

Although it is theoretically possible to get 60 % efficiency from a car engine, 30 % is more 
likely.  Also, an initially highly efficient engine will lose efficiency as it wears out. 

  

Getting useful work from heat is remarkably difficult. 
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Questions 

Tutorial 14C.04 

14C.04.1 

The pV diagram shows a cycle in which a fixed mass of an ideal gas is taken through the 
following processes: A to B isothermal compression, B to C expansion at constant 
pressure, C to A reduction in pressure at constant volume. 

  

 

  

(a) Show that the compression in process A B is isothermal. 

(b) In which two of the three processes must heat be removed from the gas? 

(c) Calculate the work done by the gas during process B to C. 

(d) The cycle shown in the diagram involves 6.9 × 10.2 mol of gas.  

(i) At which point in the cycle is the temperature of the gas greatest? 

(ii)  Calculate the temperature of the gas at this point. 

(AQA Past question) 
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14C.04.2 

 

Use the graph above and the ideal gas equation to fill in the table below. 

  

Point Pressure /Pa Volume /m3 Temperature /K 

A 1.0 x 105 0.0005 300 

B 
   

C 
   

D 
   

 

14C.04.3 

Refer to the graph in Question 14C.4.2. 

What is the work done?  

 

14C.04.4 

What is the thermal efficiency of the engine above in Question 14C.04.3? 
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14C.04.5 

A single cylinder steam engine has an idealised indicator diagram as shown in Figure 1. 
Between A and B, the cylinder is connected directly to a source of high pressure steam. 
Between C and D, the cylinder is connected to the atmosphere. 

  

 

  

  

Calculate the indicated power output of the engine when it is working at a rate such that 
one cycle takes 0.20 s.  

(AQA Past Question) 
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Tutorial 14C.05 Internal Combustion Engines 
AQA Syllabus 

Contents 
14C.051 Internal Combustion 
Engines 

14C.052 The Otto Cycle 

 

14C.053 The Diesel Cycle 14C.054 Turbines 

14C.055 The Wankel Engine 14C.056 Testing Engines 

14C.057 Engine Efficiency 

  

14C.051 Internal Combustion Engines 

The internal combustion engine does away with the need for an external heat 
source.  Fuel is burned within the engine to provide the heat that does the useful 
work.  Generally, these engines use fossil fuels which are particularly concentrated 
forms of energy.  We will look at the two most common types: 

• The petrol engine which uses the Otto Cycle. 

• The diesel engine. 

 The picture (Figure 26) shows a typical car engine. 

 

 
Figure 26 This car engine uses the Otto cycle.  
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14C052 The Otto Cycle 

The four-stroke Otto cycle is shown in the diagram (Figure 27): 

  

 
Figure 27 The Otto cycle 
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The indicator diagram for the Otto cycle is like this (Figure 28): 

 
Figure 28 Indicator diagram for the Otto Cycle 

 Let's look at the cycle and link it to the indicator diagram: 

1. The induction stroke takes place at A.  Although in theory the pressure should be the 
same as atmospheric, in practice it's rather lower.  The amount of petrol air mixture 
taken in can be increased by use of a supercharger. 

2. A to B is the compression stroke.  Both valves are closed.  The compression is 
adiabatic, and no heat enters or leaves the cylinder.  

3. Ignition occurs at C.  The gases resulting from the ignition expand adiabatically, 
leading to the power stroke. 

4. D to A the gas is cooled instantaneously.   

5. At A the exhaust stroke occurs, and the gases are removed at constant pressure to the 
atmosphere. 

6. Strange as it may seem, the piston does half a revolution at A.  Actually, it's slightly 
more in practice, as the valve timing is more complex. 
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In practice the thermodynamics of a petrol engine are more complex: 

• Fuel burns during the cycle, so the number of moles is not constant. 

• The cycle takes place very quickly, so there is swirling of the gases.  The kinetic energy 
of gases is not taken into account in these indicator diagrams. 

• There are considerable temperature gradients, so we cannot deal with the gas as if it 
were constant temperature. 

• Ignition takes a finite time and takes time to propagate through the fuel-air 
mix.  Therefore, pressures will vary within the gas. 

  

The picture shows a large petrol engine that was used in a war-time transport 
aeroplane.  Each engine (Figure 29) had a capacity of 29 litres, with a power output of 750 
kW (1000 PS). 

  

 
Figure 29 A large petrol (Avgas) aero engine 

The efficiency of a petrol engine can be increased by increasing the compression 
ratio.  However, the heating of the gases can ignite the petrol prematurely.  This pre-
ignition is known as knocking or pinking.  It can do a lot of damage to the engine. 
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14C.053 Diesel Cycle 

The Diesel cycle (Figure 30) differs from the Otto cycle in that the induction stroke takes 
in only air.  The air is compressed quite a lot so that it gets hot.  The fuel is injected into 
the hot air and ignites.  This produces the power stroke. 

 
Figure 30 The Diesel cycle 
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The indicator diagram is quite different to that of a petrol engine (Figure 31): 

  

 
Figure 31 Indicator diagram for the Diesel cycle 

Let's now look what happens in the indicator diagram: 

1. The induction stroke takes air in ideally at constant volume, pressure and 
temperature. 

2. The compression stroke takes place from A to B.  The air is compressed adiabatically 
to about 1/20 of its original volume.  It gets hot. 

3. From B to C fuel is injected in atomised form.  It burns steadily so that the pressure on 
the piston is constant. 

4. From C to D the power stroke moves the piston down as adiabatic expansion takes 
place. 

5. D to A cooling and exhaust occurs. 

  

The diesel engine has a higher thermal efficiency than the petrol engine.  However, it does 
have the disadvantage in that it is heavier.  Also, the size of engine for a given power tends 
to be bigger.  They also tend to be noisier, and incomplete combustion makes for 
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considerable pollution.  Complex exhaust systems have been developed to tackle this 
problem.  However, they are expensive if they go wrong. 

  

Several European countries have pledged to ban diesel cars by the year 2040. 

  

However, diesels have been made lighter and more refined for luxury cars.  Experiments 
with diesels for aircraft have been hugely successful.  Jet A1 fuel (paraffin) costs 80 p a 
litre compared with Avgas (aviation petrol) at £2.00 a litre. 

  

 
Figure 32 A piston-engine aircraft that runs on diesel fuel or Jet-A1 

This aircraft (a Diamond Twinstar) uses two 2.0 litre diesels (of the same type as found in 
Mercedes cars, but with higher quality components).  It can fly at 360 km/h, and flying at 
150 km/h burns about 3 litres of fuel per hour.  Rather more economical than a family 
saloon, but at 300 000 Euros not exactly a snip.  
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For either kind of engine, we can predict the power that the engine can give out by using 
a simple formula: 

  

Power output = area of p-V loop × no of cylinders × number of cycles per second 

  

  
A common bear trap is to forget that a single cylinder four stroke 
engine goes through each cycle once every two revolutions.  

  

We can also work out the maximum energy that can be put into an engine by this formula: 

Input Power = calorific value of fuel × flow rate of the fuel 

The fuel for any engine has a calorific value which is the energy that can be got out of the 
fuel per unit mass.  It is measured in joules per kilogram.  

• For wood the calorific value is about 20 × 106 J kg-1. 

• For oil it is 42 × 106 J kg-1. 

  

  
In engineering articles, watch out for fuel flows in kg min-1 which need 
to be converted to kg s-1.  You do know how to do that, don't you? 
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14C.054 Turbines 

Larger aeroplanes usually use gas turbines.  Turbines work on the same principle as 
piston engines (suck, squeeze, bang, blow), but they are rotary engines rather than 
reciprocating engines.  Therefore, they tend to be lighter than piston engines of equivalent 
power.  Figure 33 is an example (incomplete) on an old commercial aeroplane. 

  

 
Figure 33 A gas turbine on an aircraft 

The engine (a Rolls-Royce Dart) could produce 1100 kW, (1500 PS). 

 The picture below (Figure 34) shows the general layout of a gas turbine engine. 

 
Figure 34 An aircraft gas turbine 
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Figure 34 shows a turbojet engine.  It works on the same general principle of a diesel 
piston engine in the way that air is sucked in, compressed, fuel is ignited, and heated air 
rushes out of the back.  In a turbojet, the heated air drives a turbine, which drives a 
compressor.  In a ramjet, you don't have a turbine or a compressor, just a hollow 
tube.  However, the aircraft has to be moving fast through the air for the engine to work. 

  

The turbojet is less efficient than the turbofan, which is nowadays used widely in jet 
aircraft of all kinds (Figure 35). 

  

 
Figure 35 A turbofan 

The jet engine drives a large fan in a duct, and large amounts of cold air are moved 
backwards without being heated.  In the largest turbofans, the hot gases from the exhaust 
only contribute about 25 % of the total thrust.  The fan at the front runs at a lower speed 
(3000 rpm) to the rest of the turbine (33 000 rpm), so there would be a reduction gearbox. 
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In a turboprop (Figure 36), the power is extracted from the hot air stream to drive a 
propeller.  The hot gases from the back contribute about 5 % or less to the thrust. 

  

 
Figure 36 A turboprop engine 

The turbine drives both the compressor and a propeller through a reduction 
gearbox.  Typically, the propeller will turn at 2000 rpm, while the turbine spins at 30 000 
rpm.  Turbines like this can also be used to drive generators. 

  

 The advantage of a  turbine like this is that it is more efficient at high power than a piston 
engine.  If you are driving at 50 km/h, the engine in your car may be turning at 1000 rpm.  If 
you speed up to 100 km/h, the engine will be turning at 2000 rpm.  However, in an 
aeroplane, it's rather different.  The propeller develops full thrust at 2500 rpm.  At 1250 
rpm it develops hardly any thrust at all.  So, aircraft engines have to give all or nothing.  

  

A turbine is very inefficient at low revs (which is why you don't find them in cars).  It will 
gobble 50 kg of Jet A1 every hour when idling.  At full power, it uses 150 kg every 
hour.  Turbines also lose power at high altitudes where the air is thin.  A turbo-charged 
piston engine retains its power. 

  

The main disadvantage with turbines is that they are eye-wateringly expensive to buy and 
maintain.  Machines that spin at 30 000 rpm have to be made to a high precision, requiring 
skilled craftsmen to make them.  Any imbalance would shake the engine to pieces within 
seconds.  A blade coming loose would smash every other blade off - the engineers call 
this "having a haircut".  Another problem can be a "surge" or a compressor stall.  The 
compressor stops compressing momentarily and the flame goes to the front of the engine 
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with a loud bang, with a loss of thrust.  A surging engine often leads to an emergency 
landing. 

 

Another problem with turbines, often associated with compressor stalls but not always, 
is the flame-out.  The fuel stops burning, leading to complete loss of power.  The engine 
can be restarted, but it takes little imagination to see how such a situation can become 
extremely dangerous.  Commercial pilots are trained (and tested) to deal with such 
eventualities using simulators. 

  

  

14C.055 Wankel Rotary Engines 

For smaller turbine aircraft, some engineers are suggesting the use of a Wankel rotary 
engine, designed by the German engineer Felix Wankel (1902 - 1988), which acts in a 
similar way to a piston petrol engine (Figure 37).  These have the advantage of being more 
efficient than a piston engine, as well as being much lighter, but are a lot less expensive 
than a turbine.  They are less prone to being over-revved, which can do catastrophic 
damage to a piston engine. 

  

 
Figure 37 A Wankel rotary engine (Photo by J Lyon, Wikimedia Commons) 

T 

he picture (Figure 37) shows the rotor of a Mazda 1.3 litre Wankel engine that is found in 
some of their sports cars.  Some aircraft manufacturers are planning to use these in light 
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aircraft.  In larger aircraft, a Mazda engine of capacity 2.6 litres is being considered, as 
these can safely produce 525 kW (700 PS). 

  

The limiting factor with Wankel Rotary engines is the seal at the tip of each rotor, which 
tends to wear.  Also, the engines discussed here run on petrol, which is expensive.  The 
"holy grail" is to get a Wankel engine that runs on Jet A1.  This is more difficult as diesel 
engines need a high compression, although there has been some success with diesel 
Wankel engines. 
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14C.056Testing Engines 

Before any engine is put on the market, it has to be thoroughly tested.  Nobody wants an 
engine that is going to fail in use.  Nor do they want one that gobbles the fuel. There is 
nothing more useless than a broken-down car.  In an aeroplane, you cannot pull off and 
stop behind a cloud; there is only one way - down.  So various tests are done on engines, 
of which we will look at a few. One of the most common is Useful Power. 

 

You will have seen that many engines have their power quoted as brake 
horsepower (bhp).  This has been used by engineers for at least two hundred years.  At 
its crudest, it is a comparison with the power you can get out of a horse, which had been 
the common form of motive power for many centuries.  However a more scientific test 
was needed, and the diagram (Figure 38) below shows the kind of set up, called 
a dynamometer. 

  

 
Figure 38 A dynamometer 
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The mass and strap act as a brake because they provide a frictional couple against the 
rotation of the engine.  

 = mgr ................ Equation 65 

The power produced by the engine is given by the formula: 

P =  ................ Equation 66 

  

[P - power (W);  - torque (N m);  - angular velocity (rad s-1)] 

  

Originally 1 brake horsepower worked out at 746 W; now it is considered as 750 W.  It is 
often given the shorthand PS ("Pferdstärke", German for "horsepower"). 

  

The method above, although simple, has a disadvantage in that a lot of heat is 
generated.  Although the principle is much the same, the test beds for engines are much 
more sophisticated.  They can be: 

• hydraulic with the engine driving a pump; 

• electrical with the engine driving a generator into a load. 

The picture (Figure 39) below shows an engine test bed: 

  

 
Figure 39 An engine test bed (Photo Aniketdp.mech, Wikimedia Commons) 
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This picture (Figure 40) shows a water pump that an aircraft engine manufacturer uses to 
test engines before they are reinstalled into aircraft.  It mimics the loads experienced by 
the engines in flight. 

  

 
Figure 40 A water pump used to test aircraft engines 

The useful power that can be got from an engine is always less that the power worked out 
from an indicator diagram.  This is because there is friction within the engine.  The power 
needed to overcome friction is the friction power: 

friction power = indicated power - brake power 

The answer you worked out in the Question 14C.05.3 shows that a lot of power is used to 
overcome friction.  It is dissipated as heat.  Oil lubrication is essential in such an engine: 

• It reduces friction. 

• It takes away the heat produced by friction. 

Without lubrication the engine would rapidly seize up. 

 

Aircraft engines are subject to rigorous testing, as catastrophic failure can be 
disastrous.  On aerodromes, flocks of birds can be a nuisance, since an aeroplane 
running into a flock will cause serious damage, and not just to the birds.  Recently an 
airliner climbing from a New York airport ingested birds into both engines, which stalled 
and failed completely.  The pilot glided his 56 tonne aeroplane to a successful landing in 
the Hudson River.  Thanks to his skill and training, everybody got off safely.  The 
aeroplane was fished out of the river and is now in a museum.  Other similar accidents 
have not ended so happily. 
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Sometimes engineers test the engines to destruction, including firing (dead) chickens at 
them, or deliberately shearing a blade at high speed.  Such tests are very expensive, so 
good results are essential. 

  

14C.057 Engine Efficiency 

The indicated or thermal efficiency is given by: 

thermal efficiency = indicated power ÷ power input from the fuel 

  

As we have seen there are mechanical losses in an engine.  The mechanical 
efficiency of an engine can be defined as the ratio of the output power to the indicated 
power or workable power.  The output power is the power we can get from a 
dynamometer. 

mechanical efficiency = output power ÷ indicated power  

As the engine runs faster, the power absorbed in overcoming friction increases, so the 
mechanical efficiency falls away.  We can see this in the graph below (Figure 41): 

 

 
Figure 41 The mechanical efficiency of an engine falls as the speed increases 

The frictional power increase almost mirrors the decrease in mechanical efficiency. 

 The overall efficiency is the fraction of the input power of the fuel that is delivered as 
useful power: 

Overall efficiency = output power ÷ input power of the fuel. 

 The overall efficiency of internal combustion engines is not very good, with even the 
best being about 40 %.  
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Questions 

Tutorial 14C.05 

14C.05.1 

Test-bed measurements made on a single-cylinder 4-stroke petrol engine produced the 
following data: 

• mean temperature of gases in cylinder during combustion stroke 820 °C 

• mean temperature of exhaust gases 77 °C 

• area enclosed by indicator diagram loop 380 J 

• rotational speed of output shaft 1800 rev min-1 

• power developed by engine at output shaft 4.7 kW 

• calorific value of fuel 45 MJ kg-1 

• flow rate of fuel 2.1 × 10-2 kg min-1 

(a) The rate at which energy is supplied to the engine. 

(b) The indicated power of the engine. 

(c) The thermal efficiency of the engine.   

(AQA Question, adapted) 

 

14C.05.2 

An engine gives out a torque of 250 N m at 3300 rpm.  What is its power in watts and PS? 

 

14C.05.3 

In Question 1 you worked out that the indicated power of an engine was 5700 W.  The 
power available at the output shaft is 4.7 kW.   

What is the power dissipated in overcoming frictional losses in the engine?   

What fraction is this of the indicated power? 

 

14C.05.4 

What is the mechanical efficiency of the engine in Question 14C.05.3? 
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14C.05.5 

In Question 14C.05.1 you worked out that the power gained from the fuel of the engine 
was 15.8 kW.  If the power output is 4.7 kW, what is the overall efficiency?  
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Tutorial 14C.06 Second Law of Thermodynamics and 
Heat Pumps 

AQA Syllabus 
Contents 

14C.061 Second Law of 
Thermodynamics 

14C.062 The Carnot Cycle 
 

14C.063 Heat Pumps 
 

14C.064 Other Laws of 
Thermodynamics (Extension) 

 

14C.061 Second Law of Thermodynamics 

Before you tackle this tutorial, you might wish to look at Topic 13 – Thermal Physics 

  

The Second Law of Thermodynamics states that it is impossible for any heat engine to 
be 100 % efficient: 

No process is possible which results in the extraction of an amount of heat from a 
reservoir and its conversion to an equal amount of mechanical work. 

  

There are different ways of stating this.  The Kelvin statement of The Second Law is: 

It is impossible to devise a cyclically operating device, the sole effect of which is to 
absorb energy in the form of heat from a single thermal reservoir and to deliver an 

equivalent amount of work 

  

The Kelvin-Planck statement of the Second Law is: 

It is impossible to devise a cyclically operating thermal engine, the sole effect of 
which is to absorb energy in the form of heat from a single thermal reservoir and to 

deliver an equivalent amount of work 

  

 

The Clausius statement says: 

Heat can never pass from a colder to a warmer body without some other change, 
connected therewith, occurring at the same time. 
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 The theory behind these statements is that entropy increases.  In other words, all 
processes tend towards chaos (which might explain my physics lessons when I worked 
in schools).  If you drop a pack of cards, they will scatter and the chances of their landing 
in a meaningful order are very small indeed. 

  

Heat is work and work's a curse, 

And all the heat in the Universe 

Is gonna cool down. 

That will mean no more work, 

And there'll be perfect peace. 

That's entropy, man! 

[Michael Flanders and Donald Swan] 

  

Most energy is lost to the surroundings as low grade heat.  We can show this in the 
diagram below: 

 
Figure 42 A Sankey diagram 

In this diagram, called a Sankey Diagram, we can see that of 72 kW of power from the 
fuel, only 9 kW are used in actually driving a car along a road.  The rest is lost as low grade 
heat.  As we said before, getting energy out of heat is remarkably difficult. 
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All heat engines work by extracting mechanical energy from a temperature gradient.  A 
heat engine has to operate between the hot reservoir and the cold reservoir to satisfy the 
Second Law of Thermodynamics.  Heat flows from hot to cold, never the other way round: 

  

Heat won't pass from a cooler to a hotter. 

You can try it if you like, 

But you far better notta, 

Because the cold in the cooler 

Will get hotter as a ruler, 

And that's a physical law! 

[Michael Flanders and Donald Swan] 

  

We can show the heat flowing from a hot reservoir through a heat engine to a cold 
reservoir (Figure 43). 

  

 
Figure 43 Heat energy flowing from hot to cold. 
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All heat engines give up their energy to a cold reservoir.  We can define the terms used 
on the diagram (Figure 43): 

• Qin = the heat flow from the hot reservoir to the engine 

• Qout is the heat flow from the engine to the cold reservoir. 

• The work done by the heat engine is the difference between Qin and Qout. 

Therefore: 

W = Qin - Qout ................. Equation 67 

  

We can write down an efficiency relationships from Equation 67: 

  

...............Equation 68 

  

An ideal heat engine takes a quantity of heat Qin from a hot reservoir of 

temperature TH and sends a quantity of heat Qout as waste to a cold reservoir of 

temperature TC.  It can be shown that: 

  

................. Equation 69 

  

We can rewrite the efficiency equation: 

  

............... Equation 70 
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This can be rearranged to give us a useful relationship: 

................ Equation 71 

  

The temperature must always be in Kelvin.  If we set TC at 0 K, we could have a heat 
engine that was 100 % efficient, but as we can't get down to 0 K, forget it!  However, we 
can make heat engines more efficient by making the difference between that hot reservoir 
and the cold reservoir as big as possible.  In a power station, the steam coming from the 
boiler is at about 400 oC, while for the cold reservoir, water at about 10 oC is used. 

  

Note that some text books use the code  for efficiency.  The strange looking symbol  is 
"eta", a Greek letter long 'ē'.  Some text books also refer to this as the Carnot efficiency. 

  

  

14C.062 The Carnot Cycle 

The most efficient heat cycle is called the Carnot Cycle.  It consists of two isothermal 
processes and two adiabatic processes. 

  

An isothermal process is one where the pressure in an ideal gas can be expressed in 
terms of the volume: 

................ Equation 72 

An adiabatic condition arises when the following relationship applies for an ideal gas: 

  

pV = constant ................ Equation 73 

  

The power, , has a value of 5/3 or 1.67 for an ideal gas. 

  



  

89 
 

TOPIC 14C ENGINEERING PHYSICS 

The idea is shown in the diagram below (Figure 44): 

 
Figure 44 Carnot cycle 

The Second Law of Thermodynamics tells us that not all the heat supplied to the system 
can be converted into mechanical work.  The Carnot Efficiency tells us the maximum 
fraction of the supplied energy that can be converted into useful work. 

  

The Carnot Efficiency is given by: 

  

............... Equation 74 
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The picture (Figure 45) below shows the condenser of a steam turbine: 

  

 
Figure 45 A power station condenser 

In this case, steam enters the condenser at a temperature of 110 o C, and the cooling 
water temperature is about 15 oC. 

   

The dipping duck in the photograph below is a heat engine (Figure 46): 

 
Figure 46 A Dipping duck 
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 There are limitations to the theoretical efficiency of any heat engine.  

• TH cannot be too high, otherwise components could melt. 

• TC will be in the normal range of atmospheric temperatures. 

• Careful analysis of the cycle of an engine can help improve efficiency. 

• Careful design of ports so that gas can get in and out with the minimum resistance. 

• Friction cannot be eliminated.  Lubrication reduces friction in bearings, but there is 
some viscous drag with the oils themselves. 

  

A real engine does less work for a given heat transfer Qin.  Additionally, if we do a job of 

work on the real engine, we will not get Qin back.  The real engine is much less efficient 
than the reversible engine.  If you are driving a car downhill in gear, the engine acts as a 
brake.  It will not produce the same heat flow as it would if driving the car along a level 
road.  Just as well, otherwise you would boil the engine going downhill.  Not a good idea. 

  

14C.063 Heat Pumps 

We can reverse the process, pumping energy from the cold side to the hot side (Figure 
47): 

 
Figure 47 Pumping heat energy from cold to hot 
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Such a device is called a heat pump.  The cold reservoir is the environment, which can 
be the ground, the air, or water.  The hot reservoir is the house.    In this case the heat 
pump is shifting the heat energy from the cold to the hot.  The cold reservoir is very large; 
the hot reservoir is small.  The idea is shown in the diagram (Figure 48). 

 
Figure 48 Generalised action of a heat pump 

The pump moves the compressed gas which is hot.  It releases the heat into the hot 
reservoir, say a room.  The gas continues around the loop and expands cooling down.  As 
it expands, heat flows from the cold reservoir, which may be the atmosphere, or the 
ground, or water.  The gas is therefore warmed up by the heat flow into it.  It is then 
compressed again, and the cycle continues. 

  

Since the heat flow comes from the environment, which is the cold reservoir, a much 
greater amount of heat can be pumped into the room than the power of the compressor 
motor.  The heat flow possible from the environment is almost limitless. 

  

This is a good way of heating houses sustainably, but the equipment is expensive and 
planning permission may be needed. 

An important quantity is the coefficient of performance.  This is: 

The ratio of the heat transferred to the hot reservoir to the input energy required to 
pump the heat from the cold to the hot. 
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For a heat pump, the coefficient of performance is given by: 

  

.......Equation 75 

 The coefficient of performance is a ratio, so it has no units.  For a heat pump, the 
coefficient of performance can never be less than 1. 

  

Worked example 
The output temperature of a heat pump needs to be 30 o C, while the ground 
temperature is 0 oC.  
(a) Calculate the coefficient of performance. 
(b) The motor of the heat pump has a power of 1.5 kW.  What is the power of such a 
heat pump heater? 
  
Answer 
  
(a)  Equation 

 
Convert Celsius temperatures to Kelvin: 

30 oC = 303 K 
0 oC = 273 K 

 
CoPHP = 303 K ÷ (303 K - 273 K) = 10.1 

  
 
(b) Equation: 

 
QH = 10.1 × 1.5 kW = 15.15 kW = 15 kW (2 s.f.) 

   
  

In reality, the coefficient of performance of such a situation is rather less than the 
theoretical maximum. 
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The picture (Figure 49) below shows a heat pump: 

 
Figure 49 A domestic heat pump (By Kristoferb at English Wikipedia, CC BY-SA 3.0, 

https://commons.wikimedia.org/w/index.php?curid=10795550) 

The heat pump provides about 3 to 4 times as heat than a simple resistance 
heater.  However, the installations are time consuming, very disruptive and rather 
expensive.  Additionally, there are strict building regulations as to where these devices 
should be situated.  The pump needs to be away from the house and not within 1.5 metres 
of a boundary.  Many houses do not have a sufficient plot size to accommodate such a 
machine.   The effectiveness of heat pumps as a primary source of heating has been 
questioned.  Using at least 10 kW of electrical power, they will rapidly run up large 
electricity bills. 

  

In a refrigerator, the cold reservoir is small, and heat is pumped from the cold reservoir 
to the hot, which is the environment (i.e. the kitchen where the fridge stands).  While this 
may appear to contravene the Second Law of Thermodynamics, remember that the 
source of energy is the real hot reservoir which is the boiler in the power station that 
produces the energy to turn the turbine to generate the electricity. 

  

The compressor motor pumps and compresses a coolant.  The compressed coolant 
goes to a heat exchanger outside on the back, where heat is transferred 
by convection into the room.  The coolant then is sprayed into an expansion chamber in 
the ice compartment of the fridge.  The liquid evaporates, which requires energy 
as latent heat.  The energy required is taken from the inside of the cabinet, which is 
heavily insulated to prevent heat flowing from the room.  The coolant gas is taken back to 
the pump. 
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 For a refrigerator, the coefficient of performance is given by: 

  

......... Equation 76 

  

A way of telling which of the coefficient of performance formulae to use is to consider the 

target reservoir.  If it's a room being heated, we use the CoPHP formula.  If it's space that's 

being cooled, then we use the CoPref formula. 

 We can work out the theoretical coefficient of performance for a refrigerator. 

 

Worked example 
A refrigerator can maintain the contents at a temperature of 4 oC while the room has a 
temperature of 30 oC.  
(a) Calculate the coefficient of performance. 
(b) The motor has a power of 250 W.  What is the rate at which heat is transferred from 
the cabinet to the room? 
Answer 
(a) Use: 

 
Convert the Celsius temperatures to Kelvin: 

4 oC = 277 K. 
30 oC = 303 K 

CoPref = 277 K ÷ (303 K - 277 K) = 10.7 
  
(b) QC = CoPref × W = 10.7 × 250 W = 2663 W = 2700 W (2 s.f.) 
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14C.064 Other Laws of Thermodynamics (Extension) 

Thermal equilibrium happens when two bodies are brought into contact with each 
other, there is no heat flow.  This means that the temperature of the body remains the 
same.  Consider the three bodies, A, B, and C below (Figure 50).  The brown arrows show 
the heat flows between the three bodies. 

  

 
Figure 50 Heat flows between three bodies in thermal equilibrium 

  

According to the Zeroth Law of Thermodynamics, if A and B are in thermal equilibrium, 
and A and C are in thermal equilibrium, then B and C must be in thermal equilibrium. 

  

The law was called this because the First and Second laws of Thermodynamics depend 
on it.  It was discovered later than the First and Second Laws. 

  

The Third Law of Thermodynamics states that: 

  

The entropy of a perfect crystal is exactly zero when the temperature is absolute 
zero. 
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Questions 

Tutorial 14C.06 

14C.06.1 

A car uses energy from the fuel at a rate of 72 kJ s-1.  It uses 9 kJ s-1 to move along the 
road.  How much heat is lost as waste?  What is the efficiency? 

 

14C.06.2 

What is the maximum possible efficiency of an engine using steam at a temperature of 
100 oC on a day when the temperature is 24 oC? 

 

14C.06.3 

Look at Figure 43.  What do you think are the hot and cold reservoirs? 
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14C.06.4 

A small geothermal power station in Iceland pumps cold water into hot rock strata far 
below the Earth’s surface to be heated and returned at a constant temperature of 87 °C. 
The power station uses the hot water as the heat source for a heat engine which rejects 
energy to the much colder sea water near the station. 

  

(a) When the temperature of the sea water is 7 °C the power output from the heat engine 
is 5.0MW. Calculate: 

(i) the maximum theoretical efficiency of the heat engine, 

(ii) the rate at which heat energy must be transferred from the hot water if the engine 
works at the maximum theoretical efficiency, 

(iii) the rate at which energy must be transferred to the sea water under these 
conditions. 

  

(b) The power station produces electrical power with an overall efficiency which is much 
lower than the maximum theoretical efficiency of the heat engine. Give two reasons for 
this lower efficiency. 

  

(c) The overall efficiency of an oil-fired power plant of similar size to the geothermal 
station is over four times as great. Suggest one reason, other than less pollution, why 
the geothermal source was preferred for the power station. 

(AQA Past question) 
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14C.06.5 

(a) Explain what is meant by the coefficient of performance of a heat pump. 

  

(b) The box labelled E in Figure 3 shows a diagram of a combined heat and power 
scheme. The scheme provides electrical energy W from an engine-driven generator and 
heat Q1 for buildings situated near to the generator. Some of the electrical energy is 
used to drive the heat pump shown in the box labelled P. Output Q2 is also used to heat 
the buildings. 

  

 

  

You may assume that the engine runs at its maximum theoretical efficiency and that the 
electrical generator is 100% efficient. The output power of the engine-driven generator 
is 80kW. 

(i) The fuel used in the engine (E) is propane of calorific value 49 MJ kg–1. Calculate the 
rate of flow of propane into the engine. State an appropriate unit. 

(ii) The heat pump has a coefficient of performance of 2.6.  The power supplied by the 
electrical generator to the heat pump (P) is 16 kW.  Calculate the total rate at which 
energy is available for heating from both the engine and heat pump. 

(iii) The conversion of electrical energy to heat is nearly 100% efficient. Explain why the 
designer has proposed installing a heat pump rather than an electrical heater to provide 
the additional heat Q2 

(AQA past question June 2014 Q4) 
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Tutorial 14C.07 Deriving the Moment of Inertia 
Equations 

SQA Advanced Higher (14C.075), Cambridge Pre-U 
and Extension only 

Contents 
14C.071 Summing Moments of 
Inertia 

14C.072 Moments of Inertia by 
Calculus 
 

14C.073 Moment of Inertia for a 
Disc 

14C.074 Moment of Inertia for a 
Ring 

14C.075 The Moment of Inertia for a 
Rod.  (SQA Advanced Higher) 

14C.076 Three Cases 

 

You are NOT expected to know this for the AQA Engineering Option.  This is an EXTENSION 
only.  You may come across it in university level physics. 

This tutorial is long and is quite challenging.  It will only be assessed in Paper 3 Section 2 
(the hard bit). 

I would advise you to do each part separately and work through it quite slowly.  

Before doing so, have a good cup of coffee. 

   

We have seen how any object that has a mass has inertia.  See Topics 5 and 8. In linear 
dynamics, we saw that inertia is the amount by which an object resists change in 
motion.  We know from Newton II that the change in motion is described by the 
acceleration.  We have also seen in the previous tutorial that there is an equivalent 
quantity in rotational motion called moment of inertia.  The moment of inertia is the 
amount by which a rotating object opposes angular acceleration, and is related to the 

mass m by the equation: 

................ Equation 77 
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14C.071 Summing Moments of Inertia 

We can add the moments of inertia for individual elements simply by adding them 

up.  Suppose we had three masses m1, m2, and m3 at radius r1, r2, 

and r3 respectively.  Each is held to the axis by a very light stiff rod of negligible 

mass.  They are rotating anticlockwise around a vertical axis (strictly speaking, the z-
axis).  See Figure 51. 

 

  

Figure 51 Summing moments of inertia 

Therefore, for each element, we can write the moment of inertia for each one: 

............... Equation 78 

The total moment of inertia is the sum of the three individual moments of inertia: 

............... Equation 79 
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So, we can write: 

............... Equation 80 

  

Worked example 
Three masses of 2.0 kg, 2.5 kg, and 3.0 kg are at radii 1.0 m, 1.5 m, and 2.0 m 
respectively.  Calculate the total moment of inertia.  
Answer 
Calculate the moment of inertia for each element: 

I1 = 2.0 kg × (1.0 m)2 = 2.0 kg m2. 
I2 = 2.5 kg × (1.5 m)2 = 5.625 kg m2. 

I3 = 3.0 kg × (2.0 m)2 = 12 kg m2. 
  
Now add these together: 

IT = 2.0 kg m2 + 5.625 kg m2 + 12 kg m2 
= 19.625 kg m2 = 20 kg m2 (to 2 s.f. as data are to 2 s.f.) 

  
  

Notice that the moment of inertia is independent of the angular velocity.  Nor have we 
considered whether the system will balance.  You could work out whether it would 
balance by working out the centripetal forces from each element and then using the 
principle of 3 co-planar forces.  If the three centripetal forces sum to zero, the system will 
balance.  Unbalanced rotating systems end up going all over the place.  Not a good idea. 

  

Note that the moment of inertia is a scalar quantity. 
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14C.072 Deriving Moments of Inertia by Calculus 

In the section above, we gave a numerical value to each mass element but treated them 
as point masses.  In reality, they would have a certain volume.  Therefore, each of the 
three elements can be described as a volume element.     Each element will have a 
value of density depending on the material it's made of.  In these derivations, we will 
assume that all systems have a constant density.  We can define the moment of 

inertia dI for a small volume element dV of small mass dm as: 

  

.............. Equation 81 

  

The r term is the radius perpendicular to the central axis or z-axis.  We will consider only 

the z-axis. 

  

To get the total moment of inertia, we need to add up all the moments of inertia of all the 

volume elements.  This is denoted by the Sigma (): 

  

............... Equation 82 

  

It would seem an obvious step to integrate this between radius r1 and radius r2: 

............. Equation 83 

Using the powers rule, we get: 

.............. Equation 84 
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This, however, seems to be quite unlike any of the relationships we saw in the previous 
page.  We have to do more. 

  

  

14C.073 Moment of Inertia for a Disc 

Consider a thin rotating disk of radius r and thickness t, where the thickness is very much 

less than the radius (t << r).  The disk is rotating around the z axis.  The disk also has a 

uniform density of .  It is shown below (Figure 52): 

 
Figure 52 Moment of inertia for a disc 

To get the total moment of inertia, IT, we need to sum all the moments of inertia from the 

centre to the radius, r.  This is summed up by the integration: 

............... Equation 85 
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The next step is not immediately intuitive, but we know that: 

mass = volume × density 

  

m = V .............. Equation 86 

  

This links in with the volume elements mentioned above in Equation 86.  So, we can 
rewrite this as: 

dm = dV ............... Equation 87 

  

We can say that the disk is made up of a number of very narrow rings arranged 
concentrically.  We can now consider the volume of each small element as a very narrow 
ring of rectangular cross-section.  The ring is so narrow that the outer radius is only 
negligibly larger than the inner radius.  Therefore, the cross sectional area is given by the 
width of the ring multiplied by the thickness: 

A = dr × t .............. Equation 88 

 The small volume of the very narrow ring can be worked out by multiplying the area by 
the circumference of the ring: 

  

dV = 2r × dr × t ................ Equation 89 

  

So, we can now work out the mass of each very narrow ring: 

dm = (2rdr)t ............... Equation 90 

  

Now we can go back to the integral equation: 

............... Equation 91 
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And we substitute for dm to give: 

................. Equation 92 

So, we use the powers rule and take the constant of integration as 0.  Therefore: 

............... Equation 93 

 We are not quite there yet...  We need to consider the total mass of the disk, which we 
will call M.  We know that: 

M = V ............. Equation 94 

 The total volume of the disk is its area × thickness: 

V = r2t ............. Equation 95 

So, we can now write: 

M = r2t .............. Equation 96 

  

Rearranging: 

.............. Equation 97 

Now our last step is to substitute for t: 

................. Equation 98 

  

We saw this result in the previous tutorial (14C.01) for a rotating disc and a rotating 
cylinder.  It true for a rotating cylinder because a cylinder is simply a disc with a large 
value for thickness. 
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Worked example 
A solid disc has a radius of 20 cm and a mass of 1.2 kg.  Calculate the moment of 
inertia. 
  
Answer 

I = 1/2 × 1.2 kg × (0.20 m)2 = 0.024 kg m-2. 
  

  

  

14C.074 Moment of Inertia for a Ring 

Consider a thin rotating ring (often called an annulus) of inner radius r1, outer radius r2, 
and thickness t, where the thickness is very much less than the radius (t << r).  The ring is 
connected to the axis by very fine spokes of negligible mass.  The disk is rotating around 
the z axis.  The disk also has a uniform density of r.  It is shown below (Figure 53): 

  

 
Figure 53 Moment of inertia for a ring 
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As before, we can define the moment of inertia dI for a small volume element dV of 

small mass dm as: 

............. Equation 99 

  

The r term is the radius perpendicular to the central axis or z-axis.  We will consider only 

the z-axis. 

  

For the ring, the integration is different to the disk in that we have to take into account the 
inner radius and the outer radius.  Therefore, the integral equation is: 

................ Equation 100 

  

We will assume that the ring has a uniform density.  Therefore, we can work out the 

mass, dm, of each small volume element: 

  

dm = dV ............. Equation 101 

 

As before, we can say that the volume elements are rings of very narrow width, dr, so that 
the difference between the outer radius and the inner radius is so small as to be 
negligible.  As before the rings are of rectangular cross-section.  Therefore, the cross 
sectional area is given by the width of the ring multiplied by the thickness: 

 

A = dr × t ............... Equation 102 

 

  



  

109 
 

TOPIC 14C ENGINEERING PHYSICS 

The small volume of the very narrow ring can be worked out by multiplying the area by 
the circumference of the ring: 

  

dV = 2r × dr × t ............... Equation 103 

  

So, we can now work out the mass of each very narrow ring: 

 

dm = (2rdr)t .............Equation 104 

  

So, we can write the moment of inertia: 

........ Equation 105 

  

Integrating between r2 and r1, this works out as: 

 .......Equation 106 

We can factorise this as: 

............ Equation 107 

 The total mass M of the ring is the difference between the mass of the disk of 

radius r2 and the mass of a disk of radius r1: 

  

 ......... Equation 108 
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We can rearrange this to: 

................ Equation 109 

and then substitute into Equation 107: 

 

which gives: 

............... Equation 110 

Cancelling gives us our final result: 

.............. Equation 111 

Worked example 
A solid disc has a outer radius of 20 cm, an inner radius of 17 cm, and a mass of 1.2 
kg.  Calculate the moment of inertia. 
  
Answer 

I = 1/2 × 1.2 kg × [(0.20 m)2 + (0.17 m)2] = 0.041 kg m-2 
  

  

This result tells us that a ring of the same mass as the disk has a greater moment of 

inertia. Let's suppose that the inner radius is 0.85 r2 where r2 is the outer radius.  The 

thickness of the ring is the same as the disk, t. Substituting gives us: 

  

.............. Equation 112 
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Therefore: 

............ Equation 113 

  

The moment of inertia for a ring is therefore 0.86 ÷ 0.50 = 1.72 times the moment of inertia 
of a disk.  Using the answers to the two worked examples, we divide the moment of inertia 
of the ring by the moment of inertia of the disk.  We find that, to two significant figures, 
the answers are consistent. 

  

If the inner radius and the outer radius are (nearly) the same: 

............. Equation 114 

  

Clearly this would be an impossible situation, but what we can say is that the moment of 
inertia for a ring lies in the range of between 1 and 2 times the moment of inertia of a 
disk.  To achieve the same mass as a disk, however, we could have a material of higher 
density, as the volume of the material will be less.  If the ring is made of the same material 
and thickness as the disc, the mass will be less.  We can achieve the same mass of 
material of the same density by having an increase in thickness around the outside.  In 
engineering, practical flywheels are made in this way (Figure 54). 

  

 
Figure 54 A practical flywheel  
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The picture below (Figure 55) shows the platter of a vinyl LP record deck (upside 
down).  Note how there is a thick rim to increase the moment of inertia (hence the angular 
momentum): 

  

 
Figure 55 The turntable (upside down) of a record deck 

  

  



  

113 
 

TOPIC 14C ENGINEERING PHYSICS 

14C.075 The Moment of Inertia for a Rod (SQA Advanced Higher) 

We will now derive equations for a rod rotating about an axis that is perpendicular to its 
length.  The simplest case is where the axis passes through the centre of the rod.  We will 

assume that the rod is uniform.  The rod has mass M and length L.  The rod has a mass 

per unit length, , which is given by: 

  

 

  

The term  has nothing to do with coefficient of friction. 

  

 

  



  

114 
 

TOPIC 14C ENGINEERING PHYSICS 

14C.076 Three cases 

Case 1 Rod rotating about a central axis 

The rod is rotated about the z-axis like this like this (Figure 56): 

  

 
Figure 56 Road being rotated around its centre. 

The distance from the z-axis to each end of the rod is L/2.  We have used the axis as 
the zero point.  Anything that is to the left we will say is negative.  Anything to the right 
is positive. 

  

We know the definition of the moment of inertia is given by: 

................ Equation 115 

  

We will consider very small element of length dl that is l from the z-axis.  The element 

has a very small mass dm.   
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Since the rod is uniform, we can say that mass per unit length,  is: 

............. Equation 116 

 We can rearrange this to give: 

............... Equation 117 

We can modify our general equation by writing 

• r = l  

• r1 = -L/2 

• r2 = +L/2 

The terms M and L are constant.  So, the equation becomes: 

............. Equation 118 

The result of this integration is: 

............ Equation 119 

This simplifies to: 

............ Equation 120 
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And further to: 

.............. Equation 121 

To give: 

............... Equation 122 

  

Cancelling: 

............. Equation 123 

And we have our final result: 

  

............... Equation 124 

We've got there in the end. 

Examples of this case might include simplified models of the rotor of a helicopter, the 
blade of a rotary lawnmower, or a two bladed propellor of a light aeroplane. 
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Case 2 Rod rotating about an axis at the end 

We will use the same rod as we did before, except that the z-axis is at one end.  We will 

assume that the rod is uniform.  The rod has mass M and length L.  The rod has a mass 
per unit length, , which is given by: 

  

............. Equation 125 

  

The rod rotates about the axis like this (Figure 57): 

 
Figure 57 Rod spinning about an axis at one end 

We have used the axis as the zero point.  The other end of the rod is a distance +L from 
the axis.  We know the definition of the moment of inertia is given by: 

  

............ Equation 126 
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 We will consider very small element of length dl that is l from the z-axis.  The element 

has a very small mass dm.  Since the rod is uniform, we can say that: 

  

............. Equation 127 

  

We can rearrange this to give: 

  

........... Equation 128 

We can modify our general equation by writing 

• r = l  

• r1 = 0 

• r2 = +L 

The terms M and L are constant.  So, the equation becomes: 

............. Equation 129 

The result of the integration is: 

............. Equation 130 

This tidies up to: 

................ Equation 131 

Which is our final result. 
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Case 3 Rod rotating about an axis that is neither at the centre nor one end 

We will use the same rod as we did before, except that the z-axis is at a point h from the 

left hand end.  We will assume that the rod is uniform.  The rod has mass M and 

length L.  The rod has a mass per unit length, , which is given by: 

  

.................. Equation 132 

  

The rod rotates about the axis like this (Figure 58): 

 
Figure 58 Rod of unequal lengths rotating about an axis 
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The axis is the zero point.  The left hand end is -h from the axis.  The right hand end of the 

rod is a distance +(L - h) from the axis.  We know the definition of the moment of inertia 
is given by: 

............ Equation 133 

 We will consider very small element of length dl that is l from the z-axis.  The element 

has a very small mass dm.  Since the rod is uniform, we can say that: 

.............. Equation 134 

 We can rearrange this to give: 

.............. Equation 135 

We can modify our general equation by writing 

• r = l  

• r1 = -h 

• r2 = +(L - h). 

The terms M and L are constant.  So, the equation becomes: 

  

.............. Equation 136 

  

This results in: 

........... Equation 137 
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This can be simplified to: 

............... Equation 138 

We need to expand the (L - h)3 term: 

.............. Equation 139 

So, we put this in to our equation: 

............. Equation 140 

This simplifies to our final result: 

.................. Equation 141 

  

If you have got this far, well done 

Now have another coffee. 

Don't do any more until tomorrow. 
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Questions 

Tutorial 14C.07 

14C.07.1 (Challenge) 

A rod has a mass of M and a length L.  It spins on an axis that is perpendicular to the rod 

and passes through the rod at a point L/4 of its length.  This is shown below: 

 

(a)  Using calculus techniques, show that the moment of inertia of the rod is given by: 

 

(b)  The rod is 1.2 m long and is of circular cross-section 1.0 cm in diameter.  The rod is 
made of steel, density 7600 kg m-3.  Calculate its mass. 

  

(c) Hence calculate the moment of inertia.  State the unit. 
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Answers to Questions 

Tutorial 14C.01 

14C.01.1 

Use Angular velocity = (revs min-1 ÷ 60 s min-1) 

 = 2 ×  × (33 min-1 ÷ 60 s min-1) = 2 ×  × 0.55 s-1 = 3.46 rad s-1 

 

14C.01.2 

Angular acceleration is in rad s-2 

(Just like linear acceleration is in m s-2) 

 

14C.01.3 

Acceleration = change in angular velocity ÷ time interval 

Angular velocity = 2 ×  × (3000 min-1 ÷ 60 s min-1) = 100 rad s-1 

 = (100 - 0) rad s-1 ÷ 5 s = 20 rad s-1 = 62.8 rad s-2  

 

14C.01.4 

For the circular disc 

 

I = [2.5 kg x (0.2 m)2] ÷ 2 = 0.05 kg m2 

   

For the solid sphere: 

 

I = [2 x 2.5 kg x (0.2 m)2] ÷ 5 = 0.04 kg m2 
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14C.01.5 

(a) Flywheel is a hollow cylinder: 

I = Mr2 = 160 kg x (0.34 m)2 = 18.5 kg m2 

  

(b) Find the angular velocity first: 

 = 2 ×  × (44000 min-1 ÷ 60 s min-1) = 4608 rad s-1 

 

Ek = 1/2 × 18.5 kg m2 × (4608 rad s-1 )2 = 1.96 × 108 J 

 

14C.01.6 

The key to this is the moment of inertia.  The moment of inertia of the solid disk flywheel 
(ignoring the flange in the middle) is given by: 

I = 1/2 Mr2 

The second flywheel can, to a first approximation, be considered as a cylinder of mean 

radius, r.  The assumptions are  

• that the thin part of the wheel has a mass that is very much smaller that the thick 
ring part. 

• the flange can be ignored. 

The moment of inertia is given by: 

I = Mr2 

Therefore, the second flywheel will have a moment of inertia that is double that of the 
first.  Therefore, it will store double the kinetic energy for any given angular velocity. 
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14C.01.7 

Find the angular velocity at the start: 

 = 2 ×  × (750 min-1 ÷ 60 s min-1) = 25 = 78.5 rad s-1 

Find the angular velocity and the end: 

 = 2 ×  × (1500 min-1 ÷ 60 s min-1) = 50 = 157 rad s-1  

Now use the formula: 

 = + t 

157 rad s-1 = 78.5 rad s-1 +  × 3 s 

Rearrange: 

 = 78.5 rad s-1 ÷ 3 s = 26.2 rad s-2 

 

14C.01.8 

Find the angular velocity at the start: 

 = 2 ×  × (750 min-1 ÷ 60 s min-1) = 25 = 78.5 rad s-1 

Angular acceleration  = 78.5 rad s-1 ÷ 3 s = 26.2 rad s-2 

Now use the formula: 

 =t + 1/2t2 

 = 78.5 rad s-1 × 3 s + 1/2 × 26.2 rad s2 x (3 s)2 

 = 235.5 rad + 117.9 rad = 353.4 rad 
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14C.01.9 

Find the angular velocity at the start: 

 = 2 ×  × (30000 min-1 ÷ 60 s min-1) = 1000 = 3142 rad s-1 

Angular displacement  

 = 2/3 ×  = 2.09 rad 

 Now use the formula: 

0 =
 +  

0 = (3142 rad s-1)2 + 2 ×  × 2.09 rad 

 = 9.87 × 106 rad2 s-2 ÷ -(2 × 2.09 rad) = -2.36 × 106 rad s-2 

Negative means that it’s slowing down. 

 

14C.01.10 

Find the angular velocity at the start: 

 = 2 ×  × (750 min-1 ÷ 60 s min-1) = 25 = 78.5 rad s-1 

Find the angular velocity and the end: 

 = 2 ×  × (1500 min-1 ÷ 60 s min-1) = 50 = 157 rad s-1 

Now use the formula: 

 = ( + )t/2 

 = (78.5 rad s-1 + 157 rad -1) × 3 s = 353 rad 
2 

 

The same answer to question 8.  I would have been worried if it weren’t. 
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14C.01.11 

(a)   

Find the angular velocity at the start: 

 = 2 ×  × (60 min -1 ÷ 60 s min-1) = 2 = 6.28 rad s-1 

  

(b)  

Angular acceleration:  

2 = 1 + t 

0 = 6.28 rad s-1 + 40 s ×  

 = -6.28 rad s-1 ÷ 40 s = -0.157 rad s-2 

  

©  

The torque is constant, so after 20 s the rate of turning is now 30 min-1 =  rad s-1. 

Now use the formula: 

 = (1 + 2)t/2 

 = (6.28 rad s-1 + 3.14 rad s-1) × 20 s = 94.2 rad 
2 

  

(d)  

Use  = I 

 = 10 000 kg m2 × 0.157 rad s-2 = 1570 N m 
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Tutorial 14C.02 

14C.02.1 

Angular momentum is the product of the moment of inertia (kg m2) and angular velocity 
(rad s-1). 

Remember that radians are a dimensionless unit, which means they can be ignored. 

However, in the exam you will see them as kg m2 rad s-1. 

 

14C.02.2 

Angular momentum = 10 kg m2 x 20 rad s-1 = 200 kg m2 rad s-1. 

 

14C.02.3 

Since there is zero angular impulse, angular momentum is conserved. 

L at start = 1.6 kg m2 × 5 rad s-1 = 8.0 kg m2 s-1 

Moment of inertia of wheel with the clay = 1.6 kg m2 + 0.25 kg m2 = 1.85 kg m2 

New angular velocity = 8.0 kg m2 s-1 ÷ 1.85 kg m2 = 4.32 rad s-1 

 

14C.02.4 

(a)   

Since there has been an angular impulse of 1.2 kg m2 rad s-1, the momentum has 
increased by 1.2 kg m2 rad s-1.  

Since it was zero to start with, the momentum is now 1.2 kg m2 rad s-1. 

(b) 

L = I  

1.2 kg m2 rad s-1 = 4.8 × 10-2 kg m2 ×  

 = 1.2 kg m2 rad s-1 ÷ 4.8 x 10-2 kg m2 

 = 25 rad s-1  

©  

 = L/t = 1.2 kg m2 rad s-1 ÷ 2.8 s = 0.43 N m 
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14C.02.5 

Work done = torque × angle moved = 135 N m ×  rad = 424 J 

 

14C.02.6 

Power = torque × angular velocity  

Angular Velocity = (3000 min-1 ÷ 60 s min-1) × 2 = 100 = 314 rad s-1 

Power = 150 Nm × 314 rad s-1 = 47 000 W 

 

14C.02.7 

(a)  

Energy = power × time = 150 000 W × 4.4 s = 660 000 J  

  

(b) Use change in kinetic energy: 

Energy supplied = difference in kinetic energy 

E = 1/2 I
 - 1/2 I

 

660 000 J = 1/2 I ((7.4 rad s-1)2 – (1.6 rad s-1)2)  

I = 2 × 660 000 J ÷ 52.2 rad2 s-2 = 25 300 kg m2 
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14C.02.8 

(a)  

(i)  

Torque from each jet = 0.60 N × 1.8 m = 1.08 N m 

Total torque = 1.08 N m × 4 = 4.32 N m. 

  

(ii) Torque supplied by the four jets must balance the torque from the frictional couple.   

Frictional couple = 4.32 N m 

Power = torque × angular velocity. 

Angular velocity = 2 rad ÷ 110 s = 0.057 rad s-1 

Power = 4.32 N m × 0.057 rad s-1 = 0.25 W 

  

(b) 

(i)  

Average power from full speed to stop = 0.125 W 

Energy = power × time = 0.125 W × 12 s = 1.5 J 

  

(ii) 

Energy lost = difference in kinetic energy 

E = 1/2 I
 - 1/2 

 

1.5 J = 1/2 I (0.0572 – 02) 

I = 2 × 1.5 J ÷ 3.25 × 10-3 rad2 s-2 = 923 kg m2 
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Tutorial 14C.03 

14C.03.1 

Internal energy is a measure of the vibration of molecules in a material.  

In a monatomic gas, it is a measure of kinetic energy of the atoms of gas.  

In molecular gases, the internal energy is representative of the sum of kinetic energy of 
the molecules and the vibration of the bonds. 

 

14C.03.2 

Energy supplied = increase in internal energy + work done by system 

25 J = U + 20 J 

U = 5 J 

 

14C.03.3 

The pump will spring back to where it was. 

The gas will cool down, having gained its energy from the surroundings. 

 

14C.03.4 

Work out the change in volume: 

V= 0.125 m2 x 0.20 m = 0.025 m3 

Now use W = pV 

W = 1.5 x 106 Pa x 0.025 m3 = 37 500 J 

 

14C.03.5 

The heat flow from the surroundings is negligible compared to the loss of internal energy 
within the gas.  

The loss of gas is very rapid, and the conductivity of the metal is not sufficient to allow a 
significant heat flow from the surroundings.  

Also, the air is a very poor conductor. 
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14C.03.6 

a) The equation to use is: 

. 

1.01 × 105 Pa × (4.25 × 10-4 m3)1.40 = 1.70 × 105 Pa × V2
1.40 

1.01 × 105 Pa × 1.90 x 10-5 m3 = 1.70 × 105 Pa × V2
1.40 

V2
1.40 = 1.01 × 105 Pa × 1.90 × 10-5 m3 = 1.13 × 10-5 m3 

1.70 × 105 Pa 
 

V2 = (1.13 × 10-5)1/1.4 = 2.94 × 10-4 m3 (which is about 2.9 × 10-4 m3) 

  

(1/1.4 is the 1.4th root) 

  

  

(b) Use: 

 

  

1.01 × 105 Pa x 4.25 × 10-4 m3 =   1.70 × 105 Pa x 2.94 x 10-4 m3 
296 K                                                    T2 

 

T2 = 296 x 1.70 × 105 Pa x 2.94 x 10-4 m3 
          1.01 × 105 Pa x 4.25 × 10-4 m3 

 

T2 = 344 K 
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14C.03.7 

(a)  

Work done = pressure × change in volume 

Work done = 1.0 × 105 Pa × (150 x 10-4 m2 × 0.16 m) = 240 J 

  

(b)  

Increase in internal energy = 300 J – 240 J = 60 J 

  

 

  

Did you fall into the bear trap of not converting cm to m and cm2 to m2? 
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Tutorial 14C.04 

14C.04.1 

(a) Use pV = nRT 

At A T1 = p1V1/nR = (1.0 × 105 Pa × 1 × 10-3 m3)/nR = 100/nR 

At B T2 = p2V2/nR = (5.0 × 105 × 0.2 × 10-3 m3)/nR = 100/nR 

therefore, the temperature are the same, so the line must be an isothermal. 

  

(b)  

A to B (heat must be removed to keep temperature the same) 

C to A as the pressure falls in a constant volume, and no work is done. 

  

©  

W = pV = 5 × 105 Pa × (1 × 10-3 m3 – 0.2 × 10-3 m3) = 5 × 105 Pa × 0.8 × 10-3 m3 = 400 J 

  

(d) 

 (i)   

The temperature is the highest at point C. (This is because if n remains the same 
and R is a constant, T must be high as P and V are high) 

 (ii) 

T = pV/nR = (5 × 105 Pa × 1 × 10-3 m3) ÷ (8.3 J mol-1 × 0.069 mol) 

T = 870 K 

 

14C.04.2 

Point Pressure /Pa Volume /m3 Temperature /K 

A 1.0 x 105 0.0005 300 

B 2.0 x 105 0.0005 600 

C 2.0 x 105 0.0015 1800 

D 1.0 x 105 0.0015 900 
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14C.04.3 

Area of the rectangle = (0.0015 m3 – 0.0005 m-3) × (2.0 × 105 Pa – 1.0 × 105 Pa) = 100 J 

 

14C.04.4 

Thermal efficiency = useful work ÷ heat input 

= 100 J ÷ 825 J = 0.121 

Percentage efficiency = 0.121 x 100 = 12.1 % 

 

14C.04.5 

Energy per cycle is given by the enclosed area ABCD 

Area = 6 × 105 Pa × 4.5 × 10-3 m3 = 2700 J 

Each cycle takes 0.2 s  

Power = 2700 J ÷ 0.2 s = 13 500 W 
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Tutorial 14C.05 

14C.05.1 

(a)   

The energy supplied = calorific value × rate of flow 

= 45 × 106 J kg-1 × (2 × 10-2 kg min-1 ÷ 60 s min-1) = 15 800 J s-1 

  

(b)  

The engine is running at 30 s-1.  Engine goes through the power cycle once every two 
revolutions.  There are 15 cycles per second: 

Indicated power = 380 J × 15 s-1 = 5700 J s-1 

  

©  

Thermal efficiency = indicated power ÷ input power 

= 5700 J s-1 ÷ 15 800 J s-1 = 0.36 (= 36 %) 

 

14C.05.2 

Angular velocity =  × (3300 ÷ 60) = 110  = 346 rad s-1 

Power = 250 Nm × 346 rad s-1 = 86400 W 

Power (in PS = 86400 W ÷ 750 W PS-1 = 115 PS.  

 

14C.05.3 

Frictional power = indicated power – power at output. 

Frictional power = 5700 W – 4700 W = 1000 W  

This is about 17.5 % of the indicated power. 

 

14C.05.4 

Mechanical efficiency = output power ÷ indicated power 

Mechanical efficiency = 4700 W ÷ 5700 W = 0.825 (82.5%). 
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14C.05.5 

Overall efficiency = output power ÷ input power from fuel 

Mechanical efficiency = 4700 W ÷ 15800 W = 0.297 (29.7%). 
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Tutorial 14C.06 

14C.06.1 

The energy lost to the surroundings = 72 kW – 9 kW = 63 kW. 

Efficiency = 9 kW ÷ 72 kW = 0.125 (12.5 %) 

 

14C.06.2 

24 oC = 297 K and 100 oC = 373 K 

Efficiency = (373 K - 297 K) ÷ 373 K = 0.204 (20.4 %) 

 

14C.06.3 

The hot reservoir is the air in the room. 

The cold reservoir is the cooling effect of the evaporation of the water on the beak. 

(The latent heat of vaporisation of the water as it evaporates cools the beak down and 
the heat of the room causes the red alcohol to evaporate.  The pressure at the bottom 
causes the fluid to move up the tube and tips the duck forward.  When it's forward the 
fluid runs back down again, making the duck move into an upright position.) 
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14C.06.4 

(a) (i)  

Use this equation: 

 

Efficiency = (360 K - 280 K) ÷ 360 K = 0.222 (= 22.2 %) 

  

(ii) 

To get 5 MW, rate of energy exchange must be: 

Heat flow = 5.0 ÷ 0.222 = 22.5 MW 

  

(iii)  

Rate at which energy is passed to seawater = 22.5 MW - 5.0 MW = 17.5 MW 

  

(b) Any two of 

There will be friction within the heat engine. 

There will be heating in the generator windings as a current passes through the wires. 

Losses to the atmosphere. 

Variations in sea temperature. 

  

(c) Any one of 

Price of oil is expensive. 

It has to be transported to the site. 

Waste products might have to be treated. 
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14C.06.5 

(a) The definition is: 

the ratio of the heat transferred to the hot reservoir to the input energy required to 
pump the heat from the cold reservoir to the hot reservoir. 

(You will lose a mark for saying "heat input" as it's too vague.) 

  

(b) (i) Work out the maximum theoretical efficiency.  Equation to use: 

 

Efficiency = (1600 K - 290 K) ÷ 1600 K = 0.81875 (= 82 %) 

  

        Now work out the input energy (per second): 

Ein = 80 000 W ÷ 0.81875 = 97710 W (= 98 kW) 

  

        Now we can work out the fuel flow: 

Fuel flow per second = energy per second ÷ calorific value 

= 97710 W ÷ 49 ×106 K kg-1 = 1.994 × 10-3 kg s-1 (= 2.0 × 10-3 kg s-1) 

(i.e. 2 grams per second). 

     

(ii)  

In this system, the waste heat from the engine is used to heat the hot space, as well as 
the output from the heat pump. 

Heat flow from cold to hot = 16000 W × 2.6 = 41600 W (= 42 kW) 

Heat loss from the engine = 98 kW - 80 kW = 18 kW. 

Total energy flow = 42 kW + 18 kW = 60 kW 

(iii)  

The amount of electrical energy available to heat the hot space would be only 16 kW 
compared with 60 kW with this system.  The system adds energy from external sources.  
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Tutorial 14C.07 

14C.07.1 

(a)  Draw a diagram to show the system: 

  

 

We know the definition of the moment of inertia is given by: 

  

 

  

We will consider very small element of length dl that is l from the z-axis.  The element 

has a very small mass dm.  Since the rod is uniform, we can say that: 
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 We can rearrange this to give: 

 

(Yes, I did do a copy and paste from the text.) 

We can modify our general equation by writing 

• r = l 

• r1 = -L/4 

• r2 = +3L/4 

The terms M and L are constant.  So, the equation becomes: 

 

This integrates to: 

 

 

 

This simplifies to: 
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Therefore: 

 

Cancelling the L terms and tidying gives: 

 

 

The common factor between 28 and 192 is 4, so we divide top and bottom by 4: 

 

  

(b)  

Area =  × (0.5 × 10-2 m)2 = 7.85 × 10-5 m2 

Volume = 7.85 × 10-5 m2 × 1.2 m = 9.42 × 10-5 m3 

Mass = volume × density = 9.42 × 10-5 m3 × 7600 kg m-3 = 0.716 kg 

  

  

(c)  

 = (7 × 0.716 kg × (1.2 m)2) ÷ 48 = 0.150 kg m2 = 0.15 kg m2 (to 2 s.f.) 

 


